These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
387 related articles for article (PubMed ID: 17623864)
1. A simple reference state makes a significant improvement in near-native selections from structurally refined docking decoys. Liang S; Liu S; Zhang C; Zhou Y Proteins; 2007 Nov; 69(2):244-53. PubMed ID: 17623864 [TBL] [Abstract][Full Text] [Related]
2. CLUB-MARTINI: Selecting Favourable Interactions amongst Available Candidates, a Coarse-Grained Simulation Approach to Scoring Docking Decoys. Hou Q; Lensink MF; Heringa J; Feenstra KA PLoS One; 2016; 11(5):e0155251. PubMed ID: 27166787 [TBL] [Abstract][Full Text] [Related]
3. Consensus scoring for enriching near-native structures from protein-protein docking decoys. Liang S; Meroueh SO; Wang G; Qiu C; Zhou Y Proteins; 2009 May; 75(2):397-403. PubMed ID: 18831053 [TBL] [Abstract][Full Text] [Related]
4. Refining near-native protein-protein docking decoys by local resampling and energy minimization. Liang S; Wang G; Zhou Y Proteins; 2009 Aug; 76(2):309-16. PubMed ID: 19156819 [TBL] [Abstract][Full Text] [Related]
5. CyClus: a fast, comprehensive cylindrical interface approximation clustering/reranking method for rigid-body protein-protein docking decoys. Omori S; Kitao A Proteins; 2013 Jun; 81(6):1005-16. PubMed ID: 23344972 [TBL] [Abstract][Full Text] [Related]
6. A combination of rescoring and refinement significantly improves protein docking performance. Pierce B; Weng Z Proteins; 2008 Jul; 72(1):270-9. PubMed ID: 18214977 [TBL] [Abstract][Full Text] [Related]
7. Detecting near-native docking decoys by Monte Carlo stability analysis. Lorenzen S Genome Inform; 2007; 18():206-14. PubMed ID: 18546488 [TBL] [Abstract][Full Text] [Related]
8. Predicting protein complex geometries with a neural network. Chae MH; Krull F; Lorenzen S; Knapp EW Proteins; 2010 Mar; 78(4):1026-39. PubMed ID: 19938153 [TBL] [Abstract][Full Text] [Related]
9. Structural mining: self-consistent design on flexible protein-peptide docking and transferable binding affinity potential. Liu Z; Dominy BN; Shakhnovich EI J Am Chem Soc; 2004 Jul; 126(27):8515-28. PubMed ID: 15238009 [TBL] [Abstract][Full Text] [Related]
10. Binding free energy analysis of protein-protein docking model structures by evERdock. Takemura K; Matubayasi N; Kitao A J Chem Phys; 2018 Mar; 148(10):105101. PubMed ID: 29544320 [TBL] [Abstract][Full Text] [Related]
11. Evaluation of Predicted Protein-Protein Complexes by Binding Free Energy Simulations. Siebenmorgen T; Zacharias M J Chem Theory Comput; 2019 Mar; 15(3):2071-2086. PubMed ID: 30698954 [TBL] [Abstract][Full Text] [Related]
12. Rapid refinement of protein interfaces incorporating solvation: application to the docking problem. Jackson RM; Gabb HA; Sternberg MJ J Mol Biol; 1998 Feb; 276(1):265-85. PubMed ID: 9514726 [TBL] [Abstract][Full Text] [Related]
13. Computational modelling of protein interactions: energy minimization for the refinement and scoring of association decoys. Dibrov A; Myal Y; Leygue E Acta Biotheor; 2009 Dec; 57(4):419-28. PubMed ID: 19774465 [TBL] [Abstract][Full Text] [Related]
14. A physical reference state unifies the structure-derived potential of mean force for protein folding and binding. Liu S; Zhang C; Zhou H; Zhou Y Proteins; 2004 Jul; 56(1):93-101. PubMed ID: 15162489 [TBL] [Abstract][Full Text] [Related]
15. An accurate, residue-level, pair potential of mean force for folding and binding based on the distance-scaled, ideal-gas reference state. Zhang C; Liu S; Zhou H; Zhou Y Protein Sci; 2004 Feb; 13(2):400-11. PubMed ID: 14739325 [TBL] [Abstract][Full Text] [Related]
16. Using correlated parameters for improved ranking of protein-protein docking decoys. Mitra P; Pal D J Comput Chem; 2011 Apr; 32(5):787-96. PubMed ID: 20941737 [TBL] [Abstract][Full Text] [Related]
17. Classification and prediction of protein-protein interaction interface using machine learning algorithm. Das S; Chakrabarti S Sci Rep; 2021 Jan; 11(1):1761. PubMed ID: 33469042 [TBL] [Abstract][Full Text] [Related]
18. Optimal docking area: a new method for predicting protein-protein interaction sites. Fernandez-Recio J; Totrov M; Skorodumov C; Abagyan R Proteins; 2005 Jan; 58(1):134-43. PubMed ID: 15495260 [TBL] [Abstract][Full Text] [Related]
19. Progress in protein-protein docking: atomic resolution predictions in the CAPRI experiment using RosettaDock with an improved treatment of side-chain flexibility. Schueler-Furman O; Wang C; Baker D Proteins; 2005 Aug; 60(2):187-94. PubMed ID: 15981249 [TBL] [Abstract][Full Text] [Related]
20. Replica exchange improves sampling in low-resolution docking stage of RosettaDock. Zhang Z; Lange OF PLoS One; 2013; 8(8):e72096. PubMed ID: 24009670 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]