These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 17624394)

  • 1. Inhibition and recovery in a fixed microbial film leachate treatment system subject to shock loading of copper and zinc.
    Scullion J; Winson M; Matthews R
    Water Res; 2007 Oct; 41(18):4129-38. PubMed ID: 17624394
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Treating landfill leachate using passive aeration trickling filters; effects of leachate characteristics and temperature on rates and process dynamics.
    Matthews R; Winson M; Scullion J
    Sci Total Environ; 2009 Apr; 407(8):2557-64. PubMed ID: 19217644
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dynamics of copper and zinc sedimentation in a lagooning system receiving landfill leachate.
    Guigue J; Mathieu O; Lévêque J; Denimal S; Steinmann M; Milloux MJ; Grisey H
    Waste Manag; 2013 Nov; 33(11):2287-95. PubMed ID: 23810321
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simultaneous ammonium-nitrogen and copper removal, and copper recovery using nitrifying biofilm from the ultra-compact biofilm reactor.
    Lee LY; Ong SL; Ng HY; Hu JY; Koh YN
    Bioresour Technol; 2008 Sep; 99(14):6614-20. PubMed ID: 18221869
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Removal of Cu(II) from leachate using natural zeolite as a landfill liner material.
    Turan NG; Ergun ON
    J Hazard Mater; 2009 Aug; 167(1-3):696-700. PubMed ID: 19231075
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cleaning of a copper matte smelting slag from a water-jacket furnace by direct reduction of heavy metals.
    Maweja K; Mukongo T; Mutombo I
    J Hazard Mater; 2009 May; 164(2-3):856-62. PubMed ID: 18848396
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Size-fractionation and characterization of landfill leachate and the improvement of Cu2+ adsorption capacity in soil and aged refuse.
    Lou Z; Chai X; Niu D; Ou Y; Zhao Y
    Waste Manag; 2009 Jan; 29(1):143-52. PubMed ID: 18387289
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Copper(II) and zinc(II) biosorption on Pinus sylvestris L.
    Ucun H; Aksakal O; Yildiz E
    J Hazard Mater; 2009 Jan; 161(2-3):1040-5. PubMed ID: 18502038
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Landfill leachate treatment with ozone and ozone/hydrogen peroxide systems.
    Tizaoui C; Bouselmi L; Mansouri L; Ghrabi A
    J Hazard Mater; 2007 Feb; 140(1-2):316-24. PubMed ID: 17034936
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Laboratory study on sequenced permeable reactive barrier remediation for landfill leachate-contaminated groundwater.
    Jun D; Yongsheng Z; Weihong Z; Mei H
    J Hazard Mater; 2009 Jan; 161(1):224-30. PubMed ID: 18479811
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ammonia removal from landfill leachate by air stripping and absorption.
    Ferraz FM; Povinelli J; Vieira EM
    Environ Technol; 2013; 34(13-16):2317-26. PubMed ID: 24350487
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effect of landfill age on municipal leachate composition.
    Kulikowska D; Klimiuk E
    Bioresour Technol; 2008 Sep; 99(13):5981-5. PubMed ID: 18060769
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Monitoring operational and leachate characteristics of an aerobic simulated landfill bioreactor.
    Giannis A; Makripodis G; Simantiraki F; Somara M; Gidarakos E
    Waste Manag; 2008; 28(8):1346-54. PubMed ID: 17884423
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Copper and zinc tolerance of two tropical microalgae after copper acclimation.
    Johnson HL; Stauber JL; Adams MS; Jolley DF
    Environ Toxicol; 2007 Jun; 22(3):234-44. PubMed ID: 17497632
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Trace element exposure in the environment from MSW landfill leachate sediments measured by a sequential extraction technique.
    Øygard JK; Gjengedal E; Mobbs HJ
    J Hazard Mater; 2008 May; 153(1-2):751-8. PubMed ID: 17942220
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Kinetics of electrooxidation of landfill leachate in a three-dimensional carbon bed electrochemical reactor.
    Nageswara Rao N; Rohit M; Nitin G; Parameswaran PN; Astik JK
    Chemosphere; 2009 Aug; 76(9):1206-12. PubMed ID: 19564036
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In situ microbial treatment of landfill leachate using aerated lagoons.
    Mehmood MK; Adetutu E; Nedwell DB; Ball AS
    Bioresour Technol; 2009 May; 100(10):2741-4. PubMed ID: 19171480
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In situ accumulation of copper, chromium, nickel, and zinc in soils used for long-term waste water reclamation.
    Lin C; Negev I; Eshel G; Banin A
    J Environ Qual; 2008; 37(4):1477-87. PubMed ID: 18574179
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Combination of photo-Fenton and biological SBBR processes for sulfamethoxazole remediation.
    González O; Esplugas M; Sans C; Esplugas S
    Water Sci Technol; 2008; 58(9):1707-13. PubMed ID: 19029709
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optimizing the treatment of landfill leachate by conventional Fenton and photo-Fenton processes.
    Hermosilla D; Cortijo M; Huang CP
    Sci Total Environ; 2009 May; 407(11):3473-81. PubMed ID: 19278717
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.