These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 17624444)

  • 21. Generalized framework for stimulus artifact removal.
    Erez Y; Tischler H; Moran A; Bar-Gad I
    J Neurosci Methods; 2010 Aug; 191(1):45-59. PubMed ID: 20542059
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Minimization of cochlear implant stimulus artifact in cortical auditory evoked potentials.
    Gilley PM; Sharma A; Dorman M; Finley CC; Panch AS; Martin K
    Clin Neurophysiol; 2006 Aug; 117(8):1772-82. PubMed ID: 16807102
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effects of electrical pulse polarity shape on intra cochlear neural responses in humans: triphasic pulses with cathodic second phase.
    Bahmer A; Baumann U
    Hear Res; 2013 Dec; 306():123-30. PubMed ID: 24161948
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The clinical application of potentials evoked from the peripheral auditory system.
    Miller CA; Brown CJ; Abbas PJ; Chi SL
    Hear Res; 2008 Aug; 242(1-2):184-97. PubMed ID: 18515023
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Assessing auditory nerve recovery function with a modified subtraction method: results and mathematical modeling.
    Charasse B; Thai-Van H; Berger-Vachon C; Collet L
    Clin Neurophysiol; 2003 Jul; 114(7):1307-15. PubMed ID: 12842730
    [TBL] [Abstract][Full Text] [Related]  

  • 26. An improved method of reducing stimulus artifact in the electrically evoked whole-nerve potential.
    Miller CA; Abbas PJ; Brown CJ
    Ear Hear; 2000 Aug; 21(4):280-90. PubMed ID: 10981604
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A comparison of electric and magnetic compound action signals as quantitative assays of peripheral nerve regeneration.
    Kuypers PD; Gielen FL; Wai RT; Hovius SE; Godschalk M; van Egeraat JM
    Muscle Nerve; 1993 Jun; 16(6):634-41. PubMed ID: 8502261
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A new method for dealing with the stimulus artefact in electrically evoked compound action potential measurements.
    Klop WM; Hartlooper A; Briare JJ; Frijns JH
    Acta Otolaryngol; 2004 Mar; 124(2):137-43. PubMed ID: 15072415
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Methods for isolating extracellular action potentials and removing stimulus artifacts from microelectrode recordings of neurons requiring minimal operator intervention.
    Montgomery EB; Gale JT; Huang H
    J Neurosci Methods; 2005 May; 144(1):107-25. PubMed ID: 15848245
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effects of temporal properties on compound action potentials in response to amplitude-modulated electric pulse trains in guinea pigs.
    Jeng FC; Abbas PJ; Hu N; Miller CA; Nourski KV; Robinson BK
    Hear Res; 2009 Jan; 247(1):47-59. PubMed ID: 19015019
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Influence of recording instrumentation on the stimulus artifact tail in the surface acquisition of somatosensory evoked potentials.
    Hamming N; Lovely DF
    Med Eng Phys; 2007 Jan; 29(1):148-53. PubMed ID: 16442829
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A novel stimulus artifact removal technique for high-rate electrical stimulation.
    Heffer LF; Fallon JB
    J Neurosci Methods; 2008 May; 170(2):277-84. PubMed ID: 18339428
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Refractoriness of sural nerve in humans.
    Stevens P; Bawa P
    Can J Physiol Pharmacol; 2008 Sep; 86(9):600-5. PubMed ID: 18758508
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Use of bipolar parallel electrodes for well-controlled microstimulation in a mouse hippocampal brain slice.
    Neagu B; Strominger NL; Carpenter DO
    J Neurosci Methods; 2005 Jun; 144(2):153-63. PubMed ID: 15910973
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Optimizing fitting in children using objective measures such as neural response imaging and electrically evoked stapedius reflex threshold.
    Caner G; Olgun L; Gültekin G; Balaban M
    Otol Neurotol; 2007 Aug; 28(5):637-40. PubMed ID: 17667772
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Automatic spike detection based on adaptive template matching for extracellular neural recordings.
    Kim S; McNames J
    J Neurosci Methods; 2007 Sep; 165(2):165-74. PubMed ID: 17669507
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [Long-latency evoked acoustic potentials in patients with cochlear implants compared with normally hearing subjects].
    Danilkina GV; Wolberet T; Vishniakov VV; Hoppe U
    Vestn Otorinolaringol; 2009; (3):16-8. PubMed ID: 19692958
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Evoked potentials in the management of patients with cochlear implants: research and clinical applications.
    Kileny PR
    Ear Hear; 2007 Apr; 28(2 Suppl):124S-127S. PubMed ID: 17496663
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Bone conduction auditory steady state response: investigations into reducing artifact.
    Brooke RE; Brennan SK; Stevens JC
    Ear Hear; 2009 Feb; 30(1):23-30. PubMed ID: 19050642
    [TBL] [Abstract][Full Text] [Related]  

  • 40. [New method for recording human cochlear microphonic potentials].
    De Los Santos G; Sanjuán J; Gavilán J
    Acta Otorrinolaringol Esp; 1998; 49(5):341-5. PubMed ID: 9717320
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.