These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. The zeta potential of cyclo-olefin polymer microchannels and its effects on insulative (electrodeless) dielectrophoresis particle trapping devices. Mela P; van den Berg A; Fintschenko Y; Cummings EB; Simmons BA; Kirby BJ Electrophoresis; 2005 May; 26(9):1792-9. PubMed ID: 15812849 [TBL] [Abstract][Full Text] [Related]
5. 3D Insulator-based dielectrophoresis using DC-biased, AC electric fields for selective bacterial trapping. Zellner P; Shake T; Hosseini Y; Nakidde D; Riquelme MV; Sahari A; Pruden A; Behkam B; Agah M Electrophoresis; 2015 Jan; 36(2):277-83. PubMed ID: 25257669 [TBL] [Abstract][Full Text] [Related]
6. An insulator-based (electrodeless) dielectrophoretic concentrator for microbes in water. Lapizco-Encinas BH; Davalos RV; Simmons BA; Cummings EB; Fintschenko Y J Microbiol Methods; 2005 Sep; 62(3):317-26. PubMed ID: 15941604 [TBL] [Abstract][Full Text] [Related]
7. On the recent developments of insulator-based dielectrophoresis: A review. Lapizco-Encinas BH Electrophoresis; 2019 Feb; 40(3):358-375. PubMed ID: 30112789 [TBL] [Abstract][Full Text] [Related]
8. Electrothermal enrichment of submicron particles in an insulator-based dielectrophoretic microdevice. Kale A; Song L; Lu X; Yu L; Hu G; Xuan X Electrophoresis; 2018 Mar; 39(5-6):887-896. PubMed ID: 29068080 [TBL] [Abstract][Full Text] [Related]
10. Joule heating-enabled electrothermal enrichment of nanoparticles in insulator-based dielectrophoretic microdevices. Malekanfard A; Liu Z; Song L; Kale A; Zhang C; Yu L; Song Y; Xuan X Electrophoresis; 2021 Mar; 42(5):626-634. PubMed ID: 32935875 [TBL] [Abstract][Full Text] [Related]
11. Experimental and theoretical study of dielectrophoretic particle trapping in arrays of insulating structures: Effect of particle size and shape. Saucedo-Espinosa MA; Lapizco-Encinas BH Electrophoresis; 2015 May; 36(9-10):1086-97. PubMed ID: 25487065 [TBL] [Abstract][Full Text] [Related]
15. Mechanical and chemical analysis of plasma and ultraviolet-ozone surface treatments for thermal bonding of polymeric microfluidic devices. Bhattacharyya A; Klapperich CM Lab Chip; 2007 Jul; 7(7):876-82. PubMed ID: 17594007 [TBL] [Abstract][Full Text] [Related]
16. Joule heating effects in optimized insulator-based dielectrophoretic devices: An interplay between post geometry and temperature rise. Gallo-Villanueva RC; Perez-Gonzalez VH; Cardenas-Benitez B; Jind B; Martinez-Chapa SO; Lapizco-Encinas BH Electrophoresis; 2019 May; 40(10):1408-1416. PubMed ID: 30883810 [TBL] [Abstract][Full Text] [Related]
17. New non-covalent strategies for stable surface treatment of thermoplastic chips. Perez-Toralla K; Champ J; Mohamadi MR; Braun O; Malaquin L; Viovy JL; Descroix S Lab Chip; 2013 Nov; 13(22):4409-18. PubMed ID: 24061577 [TBL] [Abstract][Full Text] [Related]
18. Dielectrophoretic microbead sorting using modular electrode design and capillary-driven microfluidics. Tirapu-Azpiroz J; Temiz Y; Delamarche E Biomed Microdevices; 2017 Oct; 19(4):95. PubMed ID: 29082438 [TBL] [Abstract][Full Text] [Related]
19. Insulator-based dielectrophoretic single particle and single cancer cell trapping. Bhattacharya S; Chao TC; Ros A Electrophoresis; 2011 Sep; 32(18):2550-8. PubMed ID: 21922497 [TBL] [Abstract][Full Text] [Related]
20. Microfluidic system for dielectrophoretic separation based on a trapezoidal electrode array. Choi S; Park JK Lab Chip; 2005 Oct; 5(10):1161-7. PubMed ID: 16175274 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]