BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

310 related articles for article (PubMed ID: 17624667)

  • 21. A comparison of the properties of polyurethane immobilised Sphagnum moss, seaweed, sunflower waste and maize for the biosorption of Cu, Pb, Zn and Ni in continuous flow packed columns.
    Zhang Y; Banks C
    Water Res; 2006 Feb; 40(4):788-98. PubMed ID: 16448685
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Cupriavidus taiwanensis bacteroids in Mimosa pudica Indeterminate nodules are not terminally differentiated.
    Marchetti M; Catrice O; Batut J; Masson-Boivin C
    Appl Environ Microbiol; 2011 Mar; 77(6):2161-4. PubMed ID: 21257807
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Improvement of Cupriavidus taiwanensis Nodulation and Plant Growth Promoting Abilities by the Expression of an Exogenous ACC Deaminase Gene.
    Nascimento FX; Tavares MJ; Glick BR; Rossi MJ
    Curr Microbiol; 2018 Aug; 75(8):961-965. PubMed ID: 29516180
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The effect of solvents on metal ion adsorption by the alga Chlorella vulgaris.
    Al-Qunaibit M; Khalil M; Al-Wassil A
    Chemosphere; 2005 Jul; 60(3):412-8. PubMed ID: 15924961
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Metal uptake, transport and release by wetland plants: implications for phytoremediation and restoration.
    Weis JS; Weis P
    Environ Int; 2004 Jul; 30(5):685-700. PubMed ID: 15051245
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Removal of lead and cadmium ions from aqueous solution by adsorption onto micro-particles of dry plants.
    Benhima H; Chiban M; Sinan F; Seta P; Persin M
    Colloids Surf B Biointerfaces; 2008 Jan; 61(1):10-6. PubMed ID: 17869071
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Microbial and plant derived biomass for removal of heavy metals from wastewater.
    Ahluwalia SS; Goyal D
    Bioresour Technol; 2007 Sep; 98(12):2243-57. PubMed ID: 16427277
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Bioremediation of toxic heavy metals using acidothermophilic autotrophes.
    Umrania VV
    Bioresour Technol; 2006 Jul; 97(10):1237-42. PubMed ID: 16324838
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Coexistence of Burkholderia, Cupriavidus, and Rhizobium sp. nodule bacteria on two Mimosa spp. in Costa Rica.
    Barrett CF; Parker MA
    Appl Environ Microbiol; 2006 Feb; 72(2):1198-206. PubMed ID: 16461667
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Biosorptive removal of cadmium from contaminated groundwater and industrial effluents.
    Pandey PK; Verma Y; Choubey S; Pandey M; Chandrasekhar K
    Bioresour Technol; 2008 Jul; 99(10):4420-7. PubMed ID: 17892931
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Accumulation of Cd, Pb and Zn by 19 wetland plant species in constructed wetland.
    Liu J; Dong Y; Xu H; Wang D; Xu J
    J Hazard Mater; 2007 Aug; 147(3):947-53. PubMed ID: 17353090
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effect of some heavy metals and soil humic substances on the phytochelatin production in wild plants from silver mine areas of Guanajuato, Mexico.
    Figueroa JA; Wrobel K; Afton S; Caruso JA; Corona Felix Gutierrez J; Wrobel K
    Chemosphere; 2008 Feb; 70(11):2084-91. PubMed ID: 17931685
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Nodulation of Mimosa spp. by the beta-proteobacterium Ralstonia taiwanensis.
    Chen WM; James EK; Prescott AR; Kierans M; Sprent JI
    Mol Plant Microbe Interact; 2003 Dec; 16(12):1051-61. PubMed ID: 14651338
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Montmorillonite surface properties and sorption characteristics for heavy metal removal from aqueous solutions.
    Ijagbemi CO; Baek MH; Kim DS
    J Hazard Mater; 2009 Jul; 166(1):538-46. PubMed ID: 19131158
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Phytoremediation of heavy-metal-polluted soils: screening for new accumulator plants in Angouran mine (Iran) and evaluation of removal ability.
    Chehregani A; Noori M; Yazdi HL
    Ecotoxicol Environ Saf; 2009 Jul; 72(5):1349-53. PubMed ID: 19386362
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Competitive biosorption of Pb2+, Cu2+ and Zn2+ ions from aqueous solutions onto valonia tannin resin.
    Sengil IA; Ozacar M
    J Hazard Mater; 2009 Jul; 166(2-3):1488-94. PubMed ID: 19188018
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Aquatic macrophytes potential for the simultaneous removal of heavy metals (Buenos Aires, Argentina).
    Miretzky P; Saralegui A; Cirelli AF
    Chemosphere; 2004 Nov; 57(8):997-1005. PubMed ID: 15488590
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Characterization of phenol and trichloroethene degradation by the rhizobium Ralstonia taiwanensis.
    Chen WM; Chang JS; Wu CH; Chang SC
    Res Microbiol; 2004 Oct; 155(8):672-80. PubMed ID: 15380556
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Induction of nodD Gene in a Betarhizobium Isolate, Cupriavidus sp. of Mimosa pudica, by Root Nodule Phenolic Acids.
    Mandal SM; Chakraborty D; Dutta SR; Ghosh AK; Pati BR; Korpole S; Paul D
    Curr Microbiol; 2016 Jun; 72(6):733-7. PubMed ID: 26897126
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Exploring multi-metal biosorption by indigenous metal-hyperresistant Enterobacter sp. J1 using experimental design methodologies.
    Lu WB; Kao WC; Shi JJ; Chang JS
    J Hazard Mater; 2008 May; 153(1-2):372-81. PubMed ID: 17913351
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.