These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 1762475)

  • 1. Computer-assisted drug design. Part I. Conditions in the 1980s.
    Snyder JP
    Med Res Rev; 1991 Nov; 11(6):641-62. PubMed ID: 1762475
    [No Abstract]   [Full Text] [Related]  

  • 2. Advances in automated docking applied to human immunodeficiency virus type 1 protease.
    Miller MD; Sheridan RP; Kearsley SK; Underwood DJ
    Methods Enzymol; 1994; 241():354-70. PubMed ID: 7854188
    [No Abstract]   [Full Text] [Related]  

  • 3. Drug design: new inhibitors for HIV-1 protease based on Nelfinavir as lead.
    Perez MA; Fernandes PA; Ramos MJ
    J Mol Graph Model; 2007 Oct; 26(3):634-42. PubMed ID: 17459746
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Coevolution and subsite decomposition for the design of resistance-evading HIV-1 protease inhibitors.
    Rosin CD; Belew RK; Walker WL; Morris GM; Olson AJ; Goodsell DS
    J Mol Biol; 1999 Mar; 287(1):77-92. PubMed ID: 10074408
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Design of tight-binding human immunodeficiency virus type 1 protease inhibitors.
    Vacca JP
    Methods Enzymol; 1994; 241():311-34. PubMed ID: 7854186
    [No Abstract]   [Full Text] [Related]  

  • 6. Combinatorial design of nonsymmetrical cyclic urea inhibitors of aspartic protease of HIV-1.
    Frecer V; Burello E; Miertus S
    Bioorg Med Chem; 2005 Sep; 13(18):5492-501. PubMed ID: 16054372
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evolutionary analysis of HIV-1 protease inhibitors: Methods for design of inhibitors that evade resistance.
    Stoffler D; Sanner MF; Morris GM; Olson AJ; Goodsell DS
    Proteins; 2002 Jul; 48(1):63-74. PubMed ID: 12012338
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Targeting structural flexibility in HIV-1 protease inhibitor binding.
    Hornak V; Simmerling C
    Drug Discov Today; 2007 Feb; 12(3-4):132-8. PubMed ID: 17275733
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimization and computational evaluation of a series of potential active site inhibitors of the V82F/I84V drug-resistant mutant of HIV-1 protease: an application of the relaxed complex method of structure-based drug design.
    Perryman AL; Lin JH; Andrew McCammon J
    Chem Biol Drug Des; 2006 May; 67(5):336-45. PubMed ID: 16784458
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Design and synthesis of peptidomimetic inhibitors of HIV-1 protease and renin. Evidence for improved transport.
    Smith AB; Hirschmann R; Pasternak A; Akaishi R; Guzman MC; Jones DR; Keenan TP; Sprengeler PA; Darke PL; Emini EA
    J Med Chem; 1994 Jan; 37(2):215-8. PubMed ID: 8295206
    [No Abstract]   [Full Text] [Related]  

  • 11. Use of molecular dynamics and free energy perturbation calculations in anti-human immunodeficiency virus drug design.
    McCarrick MA; Kollman P
    Methods Enzymol; 1994; 241():370-84. PubMed ID: 7854189
    [No Abstract]   [Full Text] [Related]  

  • 12. Calculation of relative differences in the binding free energies of HIV1 protease inhibitors: a thermodynamic cycle perturbation approach.
    Reddy MR; Varney MD; Kalish V; Viswanadhan VN; Appelt K
    J Med Chem; 1994 Apr; 37(8):1145-52. PubMed ID: 8164256
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthesis and antiviral activity of a series of HIV-1 protease inhibitors with functionality tethered to the P1 or P1' phenyl substituents: X-ray crystal structure assisted design.
    Thompson WJ; Fitzgerald PM; Holloway MK; Emini EA; Darke PL; McKeever BM; Schleif WA; Quintero JC; Zugay JA; Tucker TJ
    J Med Chem; 1992 May; 35(10):1685-701. PubMed ID: 1588551
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Neutron crystallography used to identify targets to improve HIV-1 protease inhibitor.
    Hill R
    Future Med Chem; 2013 Oct; 5(15):1705. PubMed ID: 24144407
    [No Abstract]   [Full Text] [Related]  

  • 15. Restrained molecular dynamics simulations of HIV-1 protease: the first step in validating a new target for drug design.
    Perryman AL; Lin JH; McCammon JA
    Biopolymers; 2006 Jun; 82(3):272-84. PubMed ID: 16508951
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Design and synthesis of highly potent HIV-1 protease inhibitors with novel isosorbide-derived P2 ligands.
    Qiu X; Zhao GD; Tang LQ; Liu ZP
    Bioorg Med Chem Lett; 2014 Jun; 24(11):2465-8. PubMed ID: 24767846
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Design of HIV-1-PR inhibitors that do not create resistance: blocking the folding of single monomers.
    Broglia RA; Tiana G; Sutto L; Provasi D; Simona F
    Protein Sci; 2005 Oct; 14(10):2668-81. PubMed ID: 16195553
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure-based design of HIV-1 protease inhibitors: replacement of two amides and a 10 pi-aromatic system by a fused bis-tetrahydrofuran.
    Ghosh AK; Thompson WJ; Fitzgerald PM; Culberson JC; Axel MG; McKee SP; Huff JR; Anderson PS
    J Med Chem; 1994 Aug; 37(16):2506-8. PubMed ID: 8057296
    [No Abstract]   [Full Text] [Related]  

  • 19. Qualitative study of drug resistance in retroviral protease using structural modeling and site-directed mutagenesis.
    Culberson JC; Bush BL; Sardana VV
    Methods Enzymol; 1994; 241():385-94. PubMed ID: 7854190
    [No Abstract]   [Full Text] [Related]  

  • 20. A hierarchical model of HIV-1 protease drug resistance.
    Goodsell DS
    Appl Bioinformatics; 2002; 1(1):3-12. PubMed ID: 15130852
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.