These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
212 related articles for article (PubMed ID: 17624767)
1. Gas chromatographic-mass spectrometric study of the degradation of phenolic compounds in wastewater olive oil by Azotobacter Chroococcum. Juárez MJ; Zafra-Gómez A; Luzón-Toro B; Ballesteros-García OA; Navalón A; González J; Vílchez JL Bioresour Technol; 2008 May; 99(7):2392-8. PubMed ID: 17624767 [TBL] [Abstract][Full Text] [Related]
2. Growth of Azotobacter chroococcum in chemically defined media containing p-hydroxybenzoic acid and protocatechuic acid. Juarez B; Martinez-Toledo MV; Gonzalez-Lopez J Chemosphere; 2005 Jun; 59(9):1361-5. PubMed ID: 15857648 [TBL] [Abstract][Full Text] [Related]
3. Utilization of some phenolic compounds by Azotobacter chroococcum and their effect on growth and nitrogenase activity. Abd-Alla MH Microbiologia; 1994 Sep; 10(3):273-8. PubMed ID: 7873103 [TBL] [Abstract][Full Text] [Related]
4. Ecological removal of recalcitrant phenolic compounds of treated olive mill wastewater by Pediococcus pentosaceus. Ben Othman N; Ayed L; Assas N; Kachouri F; Hammami M; Hamdi M Bioresour Technol; 2008 May; 99(8):2996-3001. PubMed ID: 17686628 [TBL] [Abstract][Full Text] [Related]
5. Effects of the agronomic use of olive oil mill wastewater: field experiment. Sierra J; Martí E; Garau MA; Cruañas R Sci Total Environ; 2007 May; 378(1-2):90-4. PubMed ID: 17376514 [TBL] [Abstract][Full Text] [Related]
6. Biological treatment of two-phase olive mill wastewater (TPOMW, alpeorujo): polyhydroxyalkanoates (PHAs) production by Azotobacter strains. Cerrone F; Sánchez-Peinado Mdel M; Juárez-Jimenez B; González-López J; Pozo C J Microbiol Biotechnol; 2010 Mar; 20(3):594-601. PubMed ID: 20372033 [TBL] [Abstract][Full Text] [Related]
7. Effects of culture conditions on the production of polyhydroxyalkanoates by Azotobacter chroococcum H23 in media containing a high concentration of alpechín (wastewater from olive oil mills) as primary carbon source. Pozo C; Martínez-Toledo MV; Rodelas B; González-López J J Biotechnol; 2002 Aug; 97(2):125-31. PubMed ID: 12067519 [TBL] [Abstract][Full Text] [Related]
8. Quantification of phenolic compounds in olive oil mill wastewater by artificial neural network/laccase biosensor. Torrecilla JS; Mena ML; Yáñez-Sedeño P; García J J Agric Food Chem; 2007 Sep; 55(18):7418-26. PubMed ID: 17685539 [TBL] [Abstract][Full Text] [Related]
9. Elimination of polyphenols toxicity from olive mill wastewater sludge by its co-composting with sesame bark. Hachicha S; Cegarra J; Sellami F; Hachicha R; Drira N; Medhioub K; Ammar E J Hazard Mater; 2009 Jan; 161(2-3):1131-9. PubMed ID: 18513861 [TBL] [Abstract][Full Text] [Related]
10. Production of amino acids by Azotobacter vinelandii and Azotobacter chroococcum with phenolic compounds as sole carbon source under diazotrophic and adiazotrophic conditions. Revillas JJ; Rodelas B; Pozo C; Martínez-Toledo MV; López JG Amino Acids; 2005 Jun; 28(4):421-5. PubMed ID: 15731884 [TBL] [Abstract][Full Text] [Related]
11. Methods for preparing phenolic extracts from olive cake for potential application as food antioxidants. Suárez M; Romero MP; Ramo T; Macià A; Motilva MJ J Agric Food Chem; 2009 Feb; 57(4):1463-72. PubMed ID: 19178195 [TBL] [Abstract][Full Text] [Related]
12. Correlations of the phenolic compounds and the phenolic content in some Spanish and French olive oils. Andjelkovic M; Van Camp J; Pedra M; Renders K; Socaciu C; Verhé R J Agric Food Chem; 2008 Jul; 56(13):5181-7. PubMed ID: 18553879 [TBL] [Abstract][Full Text] [Related]
13. Electrochemical oxidation of olive oil mill wastewaters. Gotsi M; Kalogerakis N; Psillakis E; Samaras P; Mantzavinos D Water Res; 2005 Oct; 39(17):4177-87. PubMed ID: 16169569 [TBL] [Abstract][Full Text] [Related]
14. A novel finding that Streptomyces clavuligerus can produce the antibiotic clavulanic acid using olive oil as a sole carbon source. Efthimiou G; Thumser AE; Avignone-Rossa CA J Appl Microbiol; 2008 Dec; 105(6):2058-64. PubMed ID: 19120651 [TBL] [Abstract][Full Text] [Related]
15. Measuring the antioxidant activity of olive oil mill wastewater using chemiluminescence. Atanassova D; Kefalas P; Psillakis E Environ Int; 2005 Feb; 31(2):275-80. PubMed ID: 15661295 [TBL] [Abstract][Full Text] [Related]
16. Application of lime and calcium hypochlorite in the dephenolisation and discolouration of olive mill wastewater. Boukhoubza F; Jail A; Korchi F; Idrissi LL; Hannache H; Duarte JC; Hassani L; Nejmeddine A J Environ Manage; 2009 Oct; 91(1):124-32. PubMed ID: 19720448 [TBL] [Abstract][Full Text] [Related]
17. Extraction of antioxidants from olive mill wastewater and electro-coagulation of exhausted fraction to reduce its toxicity on anaerobic digestion. Khoufi S; Aloui F; Sayadi S J Hazard Mater; 2008 Mar; 151(2-3):531-9. PubMed ID: 17629620 [TBL] [Abstract][Full Text] [Related]
18. Biodepollution of wastewater containing phenolic compounds from leather industry by plant peroxidases. Diao M; Ouédraogo N; Baba-Moussa L; Savadogo PW; N'Guessan AG; Bassolé IH; Dicko MH Biodegradation; 2011 Apr; 22(2):389-96. PubMed ID: 20803235 [TBL] [Abstract][Full Text] [Related]
19. Low-molecular-weight components of olive oil mill waste-waters. DellaGreca M; Previtera L; Temussi F; Zarrelli A Phytochem Anal; 2004; 15(3):184-8. PubMed ID: 15202603 [TBL] [Abstract][Full Text] [Related]
20. Evaluation of olive oil mill wastewater toxicity on the mitochondrial bioenergetics after treatment with Candida oleophila. Peixoto F; Martins F; Amaral C; Gomes-Laranjo J; Almeida J; Palmeira CM Ecotoxicol Environ Saf; 2008 Jun; 70(2):266-75. PubMed ID: 18262649 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]