BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 17625056)

  • 1. Slow temporal filtering may largely explain the transformation of stick insect (Carausius morosus) extensor motor neuron activity into muscle movement.
    Hooper SL; Guschlbauer C; von Uckermann G; Büschges A
    J Neurophysiol; 2007 Sep; 98(3):1718-32. PubMed ID: 17625056
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Different motor neuron spike patterns produce contractions with very similar rises in graded slow muscles.
    Hooper SL; Guschlbauer C; von Uckermann G; Büschges A
    J Neurophysiol; 2007 Feb; 97(2):1428-44. PubMed ID: 17167058
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Natural neural output that produces highly variable locomotory movements.
    Hooper SL; Guschlbauer C; von Uckermann G; Büschges A
    J Neurophysiol; 2006 Oct; 96(4):2072-88. PubMed ID: 16775206
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Activity patterns and timing of muscle activity in the forward walking and backward walking stick insect Carausius morosus.
    Rosenbaum P; Wosnitza A; Büschges A; Gruhn M
    J Neurophysiol; 2010 Sep; 104(3):1681-95. PubMed ID: 20668273
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The extensor tibiae muscle of the stick insect: biomechanical properties of an insect walking leg muscle.
    Guschlbauer C; Scharstein H; Büschges A
    J Exp Biol; 2007 Mar; 210(Pt 6):1092-108. PubMed ID: 17337721
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synaptic drive contributing to rhythmic activation of motoneurons in the deafferented stick insect walking system.
    Büschges A; Ludwar BCh; Bucher D; Schmidt J; DiCaprio RA
    Eur J Neurosci; 2004 Apr; 19(7):1856-62. PubMed ID: 15078559
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modeling neuromuscular modulation in Aplysia. III. Interaction of central motor commands and peripheral modulatory state for optimal behavior.
    Brezina V; Horn CC; Weiss KR
    J Neurophysiol; 2005 Mar; 93(3):1523-56. PubMed ID: 15469963
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of coordinated movement in chicks: I. Temporal analysis of hindlimb muscle synergies at embryonic days 9 and 10.
    Bradley NS; Bekoff A
    Dev Psychobiol; 1990 Dec; 23(8):763-82. PubMed ID: 2081575
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Control of flexor motoneuron activity during single leg walking of the stick insect on an electronically controlled treadwheel.
    Gabriel JP; Scharstein H; Schmidt J; Büschges A
    J Neurobiol; 2003 Sep; 56(3):237-51. PubMed ID: 12884263
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Control of stepping velocity in a single insect leg during walking.
    Gabriel JP; Büschges A
    Philos Trans A Math Phys Eng Sci; 2007 Jan; 365(1850):251-71. PubMed ID: 17148059
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Elicitation and abrupt termination of behaviorally significant catchlike tension in a primitive insect.
    Hoyle G; Field LH
    J Neurobiol; 1983 Jul; 14(4):299-312. PubMed ID: 6411863
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A neuro-mechanical transducer model for controlling joint rotations and limb movements.
    Laczkó J; Kerry W; Rodolfo L
    Ideggyogy Sz; 2006 Jan; 59(1-2):32-43. PubMed ID: 16491570
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Temporal modulations of agonist and antagonist muscle activities accompanying improved performance of ballistic movements.
    Liang N; Yamashita T; Ni Z; Takahashi M; Murakami T; Yahagi S; Kasai T
    Hum Mov Sci; 2008 Feb; 27(1):12-28. PubMed ID: 17936390
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The neural control of contraction in a fast insect muscle.
    Josephson RK; Stokes DR; Chen V
    J Exp Zool; 1975 Sep; 193(3):281-300. PubMed ID: 1176906
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Functional consequences of activity-dependent synaptic enhancement at a crustacean neuromuscular junction.
    Stein W; Smarandache CR; Nickmann M; Hedrich UB
    J Exp Biol; 2006 Apr; 209(Pt 7):1285-300. PubMed ID: 16547300
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Central and peripheral control of the trigger mechanism for kicking and jumping in the locust.
    Jellema T; Heitler WJ
    J Comp Neurol; 1999 Feb; 404(2):212-20. PubMed ID: 9934995
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Intersegmental coordination: influence of a single walking leg on the neighboring segments in the stick insect walking system.
    Borgmann A; Scharstein H; Büschges A
    J Neurophysiol; 2007 Sep; 98(3):1685-96. PubMed ID: 17596420
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Intersegmental transfer of sensory signals in the stick insect leg muscle control system.
    Stein W; Büschges A; Bässler U
    J Neurobiol; 2006 Sep; 66(11):1253-69. PubMed ID: 16902990
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Changes in the contractile properties of motor units in the rat medial gastrocnemius muscle after one month of treadmill training.
    Pogrzebna M; Celichowski J
    Acta Physiol (Oxf); 2008 Aug; 193(4):367-79. PubMed ID: 18298635
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interjoint coordination in the stick insect leg-control system: the role of positional signaling.
    Bucher D; Akay T; DiCaprio RA; Buschges A
    J Neurophysiol; 2003 Mar; 89(3):1245-55. PubMed ID: 12626610
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.