These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 17625056)

  • 21. Intersegmental coordination of walking movements in stick insects.
    Ludwar BCh; Göritz ML; Schmidt J
    J Neurophysiol; 2005 Mar; 93(3):1255-65. PubMed ID: 15525808
    [TBL] [Abstract][Full Text] [Related]  

  • 22. In situ muscle power differs without varying in vitro mechanical properties in two insect leg muscles innervated by the same motor neuron.
    Ahn AN; Meijer K; Full RJ
    J Exp Biol; 2006 Sep; 209(Pt 17):3370-82. PubMed ID: 16916973
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Combinations of muscle synergies in the construction of a natural motor behavior.
    d'Avella A; Saltiel P; Bizzi E
    Nat Neurosci; 2003 Mar; 6(3):300-8. PubMed ID: 12563264
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Load signals assist the generation of movement-dependent reflex reversal in the femur-tibia joint of stick insects.
    Akay T; Büschges A
    J Neurophysiol; 2006 Dec; 96(6):3532-7. PubMed ID: 16956989
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Leg position learning by an insect: II. Motor strategies underlying learned leg extension.
    Forman RR; Zill SN
    J Neurobiol; 1984 May; 15(3):221-37. PubMed ID: 6736952
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Low-level activity of the trunk extensor muscles causes electromyographic manifestations of fatigue in absence of decreased oxygenation.
    van Dieën JH; Westebring-van der Putten EP; Kingma I; de Looze MP
    J Electromyogr Kinesiol; 2009 Jun; 19(3):398-406. PubMed ID: 18178450
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Descending octopaminergic neurons modulate sensory-evoked activity of thoracic motor neurons in stick insects.
    Stolz T; Diesner M; Neupert S; Hess ME; Delgado-Betancourt E; Pflüger HJ; Schmidt J
    J Neurophysiol; 2019 Dec; 122(6):2388-2413. PubMed ID: 31619113
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Intrinsic rhythm and basic tonus in insect skeletal muscle.
    Hoyle G
    J Exp Biol; 1978 Apr; 73():173-203. PubMed ID: 650145
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Cooperative mechanisms between leg joints of Carausius morosus II. Motor neuron activity and influence of conditional bursting interneuron.
    Brunn DE; Heuer A
    J Neurophysiol; 1998 Jun; 79(6):2977-85. PubMed ID: 9636101
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Premotor interneurons in the local control of stepping motor output for the stick insect single middle leg.
    von Uckermann G; Büschges A
    J Neurophysiol; 2009 Sep; 102(3):1956-75. PubMed ID: 19605613
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The behavioural transition from straight to curve walking: kinetics of leg movement parameters and the initiation of turning.
    Dürr V; Ebeling W
    J Exp Biol; 2005 Jun; 208(Pt 12):2237-52. PubMed ID: 15939767
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Structural comparison of a homologous neuron in gryllid and acridid insects.
    Wilson JA; Phillips CE; Adams ME; Huber F
    J Neurobiol; 1982 Sep; 13(5):459-67. PubMed ID: 7130982
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The functional sense of central oscillations in walking.
    Cruse H
    Biol Cybern; 2002 Apr; 86(4):271-80. PubMed ID: 11956808
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Walking in Aretaon asperrimus.
    Jeck T; Cruse H
    J Insect Physiol; 2007 Jul; 53(7):724-33. PubMed ID: 17482205
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Muscle response to changing neuronal input in the lobster (Panulirus interruptus) stomatogastric system: spike number- versus spike frequency-dependent domains.
    Morris LG; Hooper SL
    J Neurosci; 1997 Aug; 17(15):5956-71. PubMed ID: 9221792
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A neuromechanical model for the neuronal basis of curve walking in the stick insect.
    Knops S; Tóth TI; Guschlbauer C; Gruhn M; Daun-Gruhn S
    J Neurophysiol; 2013 Feb; 109(3):679-91. PubMed ID: 23136343
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Contributions of structure and innervation pattern of the stick insect extensor tibiae muscle to the filter characteristics of the muscle-joint system.
    BÄSsler U; Stein W
    J Exp Biol; 1996; 199(Pt 10):2185-98. PubMed ID: 9320094
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Tethered stick insect walking: a modified slippery surface setup with optomotor stimulation and electrical monitoring of tarsal contact.
    Gruhn M; Hoffmann O; Dübbert M; Scharstein H; Büschges A
    J Neurosci Methods; 2006 Dec; 158(2):195-206. PubMed ID: 16824615
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Vibration signals from the FT joint can induce phase transitions in both directions in motoneuron pools of the stick insect walking system.
    Bässler U; Sauer AE; Büschges A
    J Neurobiol; 2003 Aug; 56(2):125-38. PubMed ID: 12838578
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Swing Velocity Profiles of Small Limbs Can Arise from Transient Passive Torques of the Antagonist Muscle Alone.
    von Twickel A; Guschlbauer C; Hooper SL; Büschges A
    Curr Biol; 2019 Jan; 29(1):1-12.e7. PubMed ID: 30581019
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.