These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 17625789)

  • 1. Protein assembly onto patterned microfabricated devices through enzymatic activation of fusion pro-tag.
    Lewandowski AT; Yi H; Luo X; Payne GF; Ghodssi R; Rubloff GW; Bentley WE
    Biotechnol Bioeng; 2008 Feb; 99(3):499-507. PubMed ID: 17625789
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Towards area-based in vitro metabolic engineering: assembly of Pfs enzyme onto patterned microfabricated chips.
    Lewandowski AT; Bentley WE; Yi H; Rubloff GW; Payne GF; Ghodssi R
    Biotechnol Prog; 2008; 24(5):1042-51. PubMed ID: 19194912
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Programmable assembly of a metabolic pathway enzyme in a pre-packaged reusable bioMEMS device.
    Luo X; Lewandowski AT; Yi H; Payne GF; Ghodssi R; Bentley WE; Rubloff GW
    Lab Chip; 2008 Mar; 8(3):420-30. PubMed ID: 18305860
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chitosan-mediated in situ biomolecule assembly in completely packaged microfluidic devices.
    Park JJ; Luo X; Yi H; Valentine TM; Payne GF; Bentley WE; Ghodssi R; Rubloff GW
    Lab Chip; 2006 Oct; 6(10):1315-21. PubMed ID: 17102845
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tyrosine-based "activatable pro-tag": enzyme-catalyzed protein capture and release.
    Lewandowski AT; Small DA; Chen T; Payne GF; Bentley WE
    Biotechnol Bioeng; 2006 Apr; 93(6):1207-15. PubMed ID: 16506245
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Directed self-assembly of gold binding polypeptide-protein A fusion proteins for development of gold nanoparticle-based SPR immunosensors.
    Ko S; Park TJ; Kim HS; Kim JH; Cho YJ
    Biosens Bioelectron; 2009 Apr; 24(8):2592-7. PubMed ID: 19243930
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Orthogonal enzymatic reactions for the assembly of proteins at electrode addresses.
    Yang X; Shi XW; Liu Y; Bentley WE; Payne GF
    Langmuir; 2009 Jan; 25(1):338-44. PubMed ID: 19115870
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of DNA electrochemical biosensor based on covalent immobilization of probe DNA by direct coupling of sol-gel and self-assembly technologies.
    Li F; Chen W; Zhang S
    Biosens Bioelectron; 2008 Dec; 24(4):787-92. PubMed ID: 18692388
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biofabrication of antibodies and antigens via IgG-binding domain engineered with activatable pentatyrosine pro-tag.
    Wu HC; Shi XW; Tsao CY; Lewandowski AT; Fernandes R; Hung CW; DeShong P; Kobatake E; Valdes JJ; Payne GF; Bentley WE
    Biotechnol Bioeng; 2009 Jun; 103(2):231-40. PubMed ID: 19224560
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Protein layer coating method on metal surface by electrochemical process through genetical introduced tag.
    Haruyama T; Sakai T; Matsuno K
    Biomaterials; 2005 Aug; 26(24):4944-7. PubMed ID: 15769529
    [TBL] [Abstract][Full Text] [Related]  

  • 11. WO3 nanostructures facilitate electron transfer of enzyme: application to detection of H2O2 with high selectivity.
    Deng Z; Gong Y; Luo Y; Tian Y
    Biosens Bioelectron; 2009 Apr; 24(8):2465-9. PubMed ID: 19208464
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Amperometric tyrosinase biosensor based on Fe3O4 nanoparticles-chitosan nanocomposite.
    Wang S; Tan Y; Zhao D; Liu G
    Biosens Bioelectron; 2008 Jul; 23(12):1781-7. PubMed ID: 18387292
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enzymatic amplification detection of DNA based on "molecular beacon" biosensors.
    Mao X; Jiang J; Xu X; Chu X; Luo Y; Shen G; Yu R
    Biosens Bioelectron; 2008 May; 23(10):1555-61. PubMed ID: 18304797
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Methods for the preparation of electrochemical composite biosensors based on gold nanoparticles.
    González-Cortés A; Yáñez-Sedeño P; Pingarrón JM
    Methods Mol Biol; 2009; 504():157-66. PubMed ID: 19159097
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Versatile bioelectronic interfaces on flexible non-conductive substrates.
    Hassler BL; Amundsen TJ; Zeikus JG; Lee I; Worden RM
    Biosens Bioelectron; 2008 May; 23(10):1481-7. PubMed ID: 18313912
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Labeless AC impedimetric antibody-based sensors with pgml(-1) sensitivities for point-of-care biomedical applications.
    Barton AC; Collyer SD; Davis F; Garifallou GZ; Tsekenis G; Tully E; O'Kennedy R; Gibson T; Millner PA; Higson SP
    Biosens Bioelectron; 2009 Jan; 24(5):1090-5. PubMed ID: 18653325
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A novel electrochemical immunosensor based on hydrogen evolution inhibition by enzymatic copper deposition on platinum nanoparticle-modified electrode.
    Huang Y; Wen Q; Jiang JH; Shen GL; Yu RQ
    Biosens Bioelectron; 2008 Dec; 24(4):600-5. PubMed ID: 18640025
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Label-free DNA sensor based on organic thin film transistors.
    Yan F; Mok SM; Yu J; Chan HL; Yang M
    Biosens Bioelectron; 2009 Jan; 24(5):1241-5. PubMed ID: 18771910
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Surface plasmon resonance protein sensor using Vroman effect.
    Choi S; Yang Y; Chae J
    Biosens Bioelectron; 2008 Dec; 24(4):899-905. PubMed ID: 18768307
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Detection of DNA and proteins using amorphous silicon ion-sensitive thin-film field effect transistors.
    Gonçalves D; Prazeres DM; Chu V; Conde JP
    Biosens Bioelectron; 2008 Dec; 24(4):545-51. PubMed ID: 18599283
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.