These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

36 related articles for article (PubMed ID: 17625866)

  • 1. Structural and mechanistic studies on Klebsiella pneumoniae 2-Oxo-4-hydroxy-4-carboxy-5-ureidoimidazoline decarboxylase.
    French JB; Ealick SE
    J Biol Chem; 2010 Nov; 285(46):35446-54. PubMed ID: 20826786
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structure-Based Mechanism for Oxidative Decarboxylation Reactions Mediated by Amino Acids and Heme Propionates in Coproheme Decarboxylase (HemQ).
    Celis AI; Gauss GH; Streit BR; Shisler K; Moraski GC; Rodgers KR; Lukat-Rodgers GS; Peters JW; DuBois JL
    J Am Chem Soc; 2017 Feb; 139(5):1900-1911. PubMed ID: 27936663
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Insight into the Mechanism of Phenylacetate Decarboxylase (PhdB), a Toluene-Producing Glycyl Radical Enzyme.
    Rodrigues AV; Tantillo DJ; Mukhopadhyay A; Keasling JD; Beller HR
    Chembiochem; 2020 Mar; 21(5):663-671. PubMed ID: 31512343
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stabilisation of the Fatty Acid Decarboxylase from Chlorella variabilis by Caprylic Acid.
    Wu Y; Paul CE; Hollmann F
    Chembiochem; 2021 Jul; 22(14):2420-2423. PubMed ID: 34002919
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Kynurenine Pathway Regulation at Its Critical Junctions with Fluctuation of Tryptophan.
    Newton A; McCann L; Huo L; Liu A
    Metabolites; 2023 Mar; 13(4):. PubMed ID: 37110158
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Kynurenine Pathway and Polycystic Ovary Syndrome: Inflammation as a Common Denominator.
    Jovanovic F; Sudhakar A; Knezevic NN
    Int J Tryptophan Res; 2022; 15():11786469221099214. PubMed ID: 35620306
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Diflunisal Derivatives as Modulators of ACMS Decarboxylase Targeting the Tryptophan-Kynurenine Pathway.
    Yang Y; Borel T; de Azambuja F; Johnson D; Sorrentino JP; Udokwu C; Davis I; Liu A; Altman RA
    J Med Chem; 2021 Jan; 64(1):797-811. PubMed ID: 33369426
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Observing 3-hydroxyanthranilate-3,4-dioxygenase in action through a crystalline lens.
    Wang Y; Liu KF; Yang Y; Davis I; Liu A
    Proc Natl Acad Sci U S A; 2020 Aug; 117(33):19720-19730. PubMed ID: 32732435
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quaternary structure of α-amino-β-carboxymuconate-ϵ-semialdehyde decarboxylase (ACMSD) controls its activity.
    Yang Y; Davis I; Matsui T; Rubalcava I; Liu A
    J Biol Chem; 2019 Jul; 294(30):11609-11621. PubMed ID: 31189654
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reassignment of the human aldehyde dehydrogenase ALDH8A1 (ALDH12) to the kynurenine pathway in tryptophan catabolism.
    Davis I; Yang Y; Wherritt D; Liu A
    J Biol Chem; 2018 Jun; 293(25):9594-9603. PubMed ID: 29703752
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Pitcher-and-Catcher Mechanism Drives Endogenous Substrate Isomerization by a Dehydrogenase in Kynurenine Metabolism.
    Yang Y; Davis I; Ha U; Wang Y; Shin I; Liu A
    J Biol Chem; 2016 Dec; 291(51):26252-26261. PubMed ID: 27810899
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An Iron Reservoir to the Catalytic Metal: THE RUBREDOXIN IRON IN AN EXTRADIOL DIOXYGENASE.
    Liu F; Geng J; Gumpper RH; Barman A; Davis I; Ozarowski A; Hamelberg D; Liu A
    J Biol Chem; 2015 Jun; 290(25):15621-15634. PubMed ID: 25918158
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Crystallographic and spectroscopic snapshots reveal a dehydrogenase in action.
    Huo L; Davis I; Liu F; Andi B; Esaki S; Iwaki H; Hasegawa Y; Orville AM; Liu A
    Nat Commun; 2015 Jan; 6():5935. PubMed ID: 25565451
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Human α-amino-β-carboxymuconate-ε-semialdehyde decarboxylase (ACMSD): a structural and mechanistic unveiling.
    Huo L; Liu F; Iwaki H; Li T; Hasegawa Y; Liu A
    Proteins; 2015 Jan; 83(1):178-87. PubMed ID: 25392945
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The power of two: arginine 51 and arginine 239* from a neighboring subunit are essential for catalysis in α-amino-β-carboxymuconate-epsilon-semialdehyde decarboxylase.
    Huo L; Davis I; Chen L; Liu A
    J Biol Chem; 2013 Oct; 288(43):30862-71. PubMed ID: 24019523
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evidence for a dual role of an active site histidine in α-amino-β-carboxymuconate-ε-semialdehyde decarboxylase.
    Huo L; Fielding AJ; Chen Y; Li T; Iwaki H; Hosler JP; Chen L; Hasegawa Y; Que L; Liu A
    Biochemistry; 2012 Jul; 51(29):5811-21. PubMed ID: 22746257
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Detection of transient intermediates in the metal-dependent nonoxidative decarboxylation catalyzed by alpha-amino-beta-carboxymuconate-epsilon-semialdehyde decarboxylase.
    Li T; Ma JK; Hosler JP; Davidson VL; Liu A
    J Am Chem Soc; 2007 Aug; 129(30):9278-9. PubMed ID: 17625866
    [No Abstract]   [Full Text] [Related]  

  • 18. Transition metal-catalyzed nonoxidative decarboxylation reactions.
    Liu A; Zhang H
    Biochemistry; 2006 Sep; 45(35):10407-11. PubMed ID: 16939193
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kinetic and spectroscopic characterization of ACMSD from Pseudomonas fluorescens reveals a pentacoordinate mononuclear metallocofactor.
    Li T; Walker AL; Iwaki H; Hasegawa Y; Liu A
    J Am Chem Soc; 2005 Sep; 127(35):12282-90. PubMed ID: 16131206
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 2.