These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
382 related articles for article (PubMed ID: 17626103)
1. CD40-CD40 ligand interactions promote trafficking of CD8+ T cells into the brain and protection against West Nile virus encephalitis. Sitati E; McCandless EE; Klein RS; Diamond MS J Virol; 2007 Sep; 81(18):9801-11. PubMed ID: 17626103 [TBL] [Abstract][Full Text] [Related]
2. CD4+ T-cell responses are required for clearance of West Nile virus from the central nervous system. Sitati EM; Diamond MS J Virol; 2006 Dec; 80(24):12060-9. PubMed ID: 17035323 [TBL] [Abstract][Full Text] [Related]
3. CD8+ T cells use TRAIL to restrict West Nile virus pathogenesis by controlling infection in neurons. Shrestha B; Pinto AK; Green S; Bosch I; Diamond MS J Virol; 2012 Sep; 86(17):8937-48. PubMed ID: 22740407 [TBL] [Abstract][Full Text] [Related]
4. IL-1R1 signaling regulates CXCL12-mediated T cell localization and fate within the central nervous system during West Nile Virus encephalitis. Durrant DM; Daniels BP; Klein RS J Immunol; 2014 Oct; 193(8):4095-106. PubMed ID: 25200953 [TBL] [Abstract][Full Text] [Related]
5. Dynamics of Tissue-Specific CD8 Aguilar-Valenzuela R; Netland J; Seo YJ; Bevan MJ; Grakoui A; Suthar MS J Virol; 2018 May; 92(10):. PubMed ID: 29514902 [TBL] [Abstract][Full Text] [Related]
6. Tumor necrosis factor alpha protects against lethal West Nile virus infection by promoting trafficking of mononuclear leukocytes into the central nervous system. Shrestha B; Zhang B; Purtha WE; Klein RS; Diamond MS J Virol; 2008 Sep; 82(18):8956-64. PubMed ID: 18632856 [TBL] [Abstract][Full Text] [Related]
7. Key role of T cell defects in age-related vulnerability to West Nile virus. Brien JD; Uhrlaub JL; Hirsch A; Wiley CA; Nikolich-Zugich J J Exp Med; 2009 Nov; 206(12):2735-45. PubMed ID: 19901080 [TBL] [Abstract][Full Text] [Related]
8. CXCR4 antagonism increases T cell trafficking in the central nervous system and improves survival from West Nile virus encephalitis. McCandless EE; Zhang B; Diamond MS; Klein RS Proc Natl Acad Sci U S A; 2008 Aug; 105(32):11270-5. PubMed ID: 18678898 [TBL] [Abstract][Full Text] [Related]
9. Fas ligand interactions contribute to CD8+ T-cell-mediated control of West Nile virus infection in the central nervous system. Shrestha B; Diamond MS J Virol; 2007 Nov; 81(21):11749-57. PubMed ID: 17804505 [TBL] [Abstract][Full Text] [Related]
10. Chemokine receptor CCR5 promotes leukocyte trafficking to the brain and survival in West Nile virus infection. Glass WG; Lim JK; Cholera R; Pletnev AG; Gao JL; Murphy PM J Exp Med; 2005 Oct; 202(8):1087-98. PubMed ID: 16230476 [TBL] [Abstract][Full Text] [Related]
11. The Interferon-Stimulated Gene Ifitm3 Restricts West Nile Virus Infection and Pathogenesis. Gorman MJ; Poddar S; Farzan M; Diamond MS J Virol; 2016 Sep; 90(18):8212-25. PubMed ID: 27384652 [TBL] [Abstract][Full Text] [Related]
12. CD8(+) T cell-mediated immune responses in West Nile virus (Sarafend strain) encephalitis are independent of gamma interferon. Wang Y; Lobigs M; Lee E; Koskinen A; Müllbacher A J Gen Virol; 2006 Dec; 87(Pt 12):3599-3609. PubMed ID: 17098975 [TBL] [Abstract][Full Text] [Related]
13. Intrinsic Innate Immune Responses Control Viral Growth and Protect against Neuronal Death in an Clarke P; Leser JS; Tyler KL J Virol; 2021 Aug; 95(18):e0083521. PubMed ID: 34190599 [TBL] [Abstract][Full Text] [Related]
14. High clonality of virus-specific T lymphocytes defined by TCR usage in the brains of mice infected with West Nile virus. Kitaura K; Fujii Y; Hayasaka D; Matsutani T; Shirai K; Nagata N; Lim CK; Suzuki S; Takasaki T; Suzuki R; Kurane I J Immunol; 2011 Oct; 187(8):3919-30. PubMed ID: 21908734 [TBL] [Abstract][Full Text] [Related]
15. CD8+ T cells mediate recovery and immunopathology in West Nile virus encephalitis. Wang Y; Lobigs M; Lee E; Müllbacher A J Virol; 2003 Dec; 77(24):13323-34. PubMed ID: 14645588 [TBL] [Abstract][Full Text] [Related]
16. A recombinant fusion protein consisting of West Nile virus envelope domain III fused in-frame with equine CD40 ligand induces antiviral immune responses in horses. Liu SA; Haque M; Stanfield B; Andrews FM; Roy AA; Kousoulas KG Vet Microbiol; 2017 Jan; 198():51-58. PubMed ID: 28062007 [TBL] [Abstract][Full Text] [Related]
17. CCR5 limits cortical viral loads during West Nile virus infection of the central nervous system. Durrant DM; Daniels BP; Pasieka T; Dorsey D; Klein RS J Neuroinflammation; 2015 Dec; 12():233. PubMed ID: 26667390 [TBL] [Abstract][Full Text] [Related]
18. West Nile Virus Infection Blocks Inflammatory Response and T Cell Costimulatory Capacity of Human Monocyte-Derived Dendritic Cells. Zimmerman MG; Bowen JR; McDonald CE; Pulendran B; Suthar MS J Virol; 2019 Dec; 93(23):. PubMed ID: 31534040 [TBL] [Abstract][Full Text] [Related]
19. Neuronal CXCL10 directs CD8+ T-cell recruitment and control of West Nile virus encephalitis. Klein RS; Lin E; Zhang B; Luster AD; Tollett J; Samuel MA; Engle M; Diamond MS J Virol; 2005 Sep; 79(17):11457-66. PubMed ID: 16103196 [TBL] [Abstract][Full Text] [Related]
20. A temporal role of type I interferon signaling in CD8+ T cell maturation during acute West Nile virus infection. Pinto AK; Daffis S; Brien JD; Gainey MD; Yokoyama WM; Sheehan KC; Murphy KM; Schreiber RD; Diamond MS PLoS Pathog; 2011 Dec; 7(12):e1002407. PubMed ID: 22144897 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]