These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
145 related articles for article (PubMed ID: 17626432)
1. Long-term stability of organic carbon-stimulated chromate reduction in contaminated soils and its relation to manganese redox status. Tokunaga TK; Wan J; Lanzirotti A; Sutton SR; Newville M; Rao W Environ Sci Technol; 2007 Jun; 41(12):4326-31. PubMed ID: 17626432 [TBL] [Abstract][Full Text] [Related]
2. Enhancement of chromate reduction in soils by surface modified biochar. Mandal S; Sarkar B; Bolan N; Ok YS; Naidu R J Environ Manage; 2017 Jan; 186(Pt 2):277-284. PubMed ID: 27229360 [TBL] [Abstract][Full Text] [Related]
3. Hexavalent chromium reduction by tartaric acid and isopropyl alcohol in Mid-Atlantic soils and the role of Mn(III,IV)(hydr)oxides. Brose DA; James BR Environ Sci Technol; 2013 Nov; 47(22):12985-91. PubMed ID: 24102200 [TBL] [Abstract][Full Text] [Related]
4. The influence of biochar and black carbon on reduction and bioavailability of chromate in soils. Choppala GK; Bolan NS; Megharaj M; Chen Z; Naidu R J Environ Qual; 2012; 41(4):1175-84. PubMed ID: 22751060 [TBL] [Abstract][Full Text] [Related]
5. In situ reduction of chromium(VI) in heavily contaminated soils through organic carbon amendment. Tokunaga TK; Wan J; Firestone MK; Hazen TC; Olson KR; Herman DJ; Sutton SR; Lanzirotti A J Environ Qual; 2003; 32(5):1641-9. PubMed ID: 14535304 [TBL] [Abstract][Full Text] [Related]
6. XANES evidence for oxidation of Cr(III) to Cr(VI) by Mn-oxides in a lateritic regolith developed on serpentinized ultramafic rocks of New Caledonia. Fandeur D; Juillot F; Morin G; Olivi L; Cognigni A; Webb SM; Ambrosi JP; Fritsch E; Guyot F; Brown GE Environ Sci Technol; 2009 Oct; 43(19):7384-90. PubMed ID: 19848150 [TBL] [Abstract][Full Text] [Related]
7. Polysulfide speciation and reactivity in chromate-contaminated soil. Chrysochoou M; Johnston CP J Hazard Mater; 2015 Jan; 281():87-94. PubMed ID: 25092639 [TBL] [Abstract][Full Text] [Related]
8. Hydrogen peroxide effects on chromium oxidation state and solubility in four diverse, chromium-enriched soils. Rock ML; James BR; Helz GR Environ Sci Technol; 2001 Oct; 35(20):4054-9. PubMed ID: 11686366 [TBL] [Abstract][Full Text] [Related]
9. Chromium(III) oxidation by three poorly-crystalline manganese(IV) oxides. 1. Chromium(III)-oxidizing capacity. Landrot G; Ginder-Vogel M; Livi K; Fitts JP; Sparks DL Environ Sci Technol; 2012 Nov; 46(21):11594-600. PubMed ID: 23050871 [TBL] [Abstract][Full Text] [Related]
10. Oxidation-reduction transformations of chromium in aerobic soils and the role of electron-shuttling quinones. Brose DA; James BR Environ Sci Technol; 2010 Dec; 44(24):9438-44. PubMed ID: 21105643 [TBL] [Abstract][Full Text] [Related]
11. Manganese(II)-catalyzed and clay-minerals-mediated reduction of chromium(VI) by citrate. Sarkar B; Naidu R; Krishnamurti GS; Megharaj M Environ Sci Technol; 2013; 47(23):13629-36. PubMed ID: 24195488 [TBL] [Abstract][Full Text] [Related]
12. Real-time X-ray absorption spectroscopy of uranium, iron, and manganese in contaminated sediments during bioreduction. Tokunag TK; Wan J; Kim Y; Sutton SR; Newville M; Lanzirotti A; Rao W Environ Sci Technol; 2008 Apr; 42(8):2839-44. PubMed ID: 18497132 [TBL] [Abstract][Full Text] [Related]
13. Oxidation of antimony (III) in soil by manganese (IV) oxide using X-ray absorption fine structure. Fu L; Shozugawa K; Matsuo M J Environ Sci (China); 2018 Nov; 73():31-37. PubMed ID: 30290869 [TBL] [Abstract][Full Text] [Related]
14. Differential effect of biochar upon reduction-induced mobility and bioavailability of arsenate and chromate. Choppala G; Bolan N; Kunhikrishnan A; Bush R Chemosphere; 2016 Feb; 144():374-81. PubMed ID: 26383264 [TBL] [Abstract][Full Text] [Related]
15. Chromate removal as influenced by the structural changes of soil components upon carbonization at different temperatures. Chen KY; Liu JC; Chiang PN; Wang SL; Kuan WH; Tzou YM; Deng Y; Tseng KJ; Chen CC; Wang MK Environ Pollut; 2012 Mar; 162():151-8. PubMed ID: 22243860 [TBL] [Abstract][Full Text] [Related]
16. Formation and Immobilization of Cr(VI) Species in Long-Term Tannery Waste Contaminated Soils. Shi J; McGill WB; Chen N; Rutherford PM; Whitcombe TW; Zhang W Environ Sci Technol; 2020 Jun; 54(12):7226-7235. PubMed ID: 32432861 [TBL] [Abstract][Full Text] [Related]
17. Natural source of Cr(VI) in soil: The anoxic oxidation of Cr(III) by Mn oxides. Ao M; Sun S; Deng T; Zhang F; Liu T; Tang Y; Li J; Wang S; Qiu R J Hazard Mater; 2022 Jul; 433():128805. PubMed ID: 35381512 [TBL] [Abstract][Full Text] [Related]
18. Chemodynamics of chromium reduction in soils: implications to bioavailability. Choppala G; Bolan N; Seshadri B J Hazard Mater; 2013 Oct; 261():718-24. PubMed ID: 23608747 [TBL] [Abstract][Full Text] [Related]
19. Impact of wastewater derived dissolved organic carbon on reduction, mobility, and bioavailability of As(V) and Cr(VI) in contaminated soils. Kunhikrishnan A; Choppala G; Seshadri B; Wijesekara H; Bolan NS; Mbene K; Kim WI J Environ Manage; 2017 Jan; 186(Pt 2):183-191. PubMed ID: 27530073 [TBL] [Abstract][Full Text] [Related]
20. Chromium diffusion and reduction in soil aggregates. Tokunaga TK; Wan J; Firestone MK; Hazen TC; Schwartz E; Sutton SR; Newville M Environ Sci Technol; 2001 Aug; 35(15):3169-74. PubMed ID: 11505996 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]