These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 17626446)

  • 1. High photocatalytic capability of self-assembled nanoporous WO3 with preferential orientation of (002) planes.
    Guo Y; Quan X; Lu N; Zhao H; Chen S
    Environ Sci Technol; 2007 Jun; 41(12):4422-7. PubMed ID: 17626446
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nanoporous TiO2 and WO3 films by anodization of titanium and tungsten substrates: influence of process variables on morphology and photoelectrochemical response.
    de Tacconi NR; Chenthamarakshan CR; Yogeeswaran G; Watcharenwong A; de Zoysa RS; Basit NA; Rajeshwar K
    J Phys Chem B; 2006 Dec; 110(50):25347-55. PubMed ID: 17165981
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tungsten trioxide as a visible light photocatalyst for volatile organic carbon removal.
    Wicaksana Y; Liu S; Scott J; Amal R
    Molecules; 2014 Oct; 19(11):17747-62. PubMed ID: 25365299
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Removal of elemental mercury by TiO₂doped with WO₃ and V₂O₅ for their photo- and thermo-catalytic removal mechanisms.
    Shen H; Ie IR; Yuan CS; Hung CH; Chen WH
    Environ Sci Pollut Res Int; 2016 Mar; 23(6):5839-52. PubMed ID: 26590063
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Degradation of 4-chlorophenol in TiO2, WO3, SnO2, TiO2/WO3 and TiO2/SnO2 systems.
    Lin CF; Wu CH; Onn ZN
    J Hazard Mater; 2008 Jun; 154(1-3):1033-9. PubMed ID: 18160216
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Photocatalytic energy storage ability of TiO2-WO3 composite prepared by wet-chemical technique.
    Cao L; Yuan J; Chen M; Shangguan W
    J Environ Sci (China); 2010; 22(3):454-9. PubMed ID: 20614790
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Solar photocatalytic activity of TiO2 modified with WO3 on the degradation of an organophosphorus pesticide.
    Ramos-Delgado NA; Gracia-Pinilla MA; Maya-Treviño L; Hinojosa-Reyes L; Guzman-Mar JL; Hernández-Ramírez A
    J Hazard Mater; 2013 Dec; 263 Pt 1():36-44. PubMed ID: 23993423
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthesis and characterization of ultrathin WO3 nanodisks utilizing long-chain poly(ethylene glycol).
    Wolcott A; Kuykendall TR; Chen W; Chen S; Zhang JZ
    J Phys Chem B; 2006 Dec; 110(50):25288-96. PubMed ID: 17165974
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Different recycle behavior of Cu2+ and Fe3+ ions for phenol photodegradation over TiO2 and WO3.
    Wan L; Sheng J; Chen H; Xu Y
    J Hazard Mater; 2013 Nov; 262():114-20. PubMed ID: 24018136
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Photocatalytic removal of gaseous nitrogen oxides using WO
    Mendoza JA; Lee DH; Kang JH
    Chemosphere; 2017 Sep; 182():539-546. PubMed ID: 28521170
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Photodegradation performance and mechanism of 4-nonylphenol by WO
    Xin Y; Wang G; Zhu X; Gao M; Liu Y; Chen Q
    Environ Technol; 2017 Dec; 38(24):3084-3092. PubMed ID: 28142626
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Photocatalytic activity of novel AgBr/WO3 composite photocatalyst under visible light irradiation for methyl orange degradation.
    Cao J; Luo B; Lin H; Chen S
    J Hazard Mater; 2011 Jun; 190(1-3):700-6. PubMed ID: 21561712
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Experimental and theoretical investigation of a mesoporous K(x)WO3 material having superior mechanical strength.
    Dey S; Anderson ST; Mayanovic RA; Sakidja R; Landskron K; Kokoszka B; Mandal M; Wang Z
    Nanoscale; 2016 Feb; 8(5):2937-43. PubMed ID: 26781181
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Photochromic and Photocatalytic Properties of Ultra-Small PVP-Stabilized WO
    Kozlov DA; Shcherbakov AB; Kozlova TO; Angelov B; Kopitsa GP; Garshev AV; Baranchikov AE; Ivanova OS; Ivanov VK
    Molecules; 2019 Dec; 25(1):. PubMed ID: 31905983
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Preparation and characterization of zinc and copper co-doped WO3 nanoparticles: Application in photocatalysis and photobiology.
    Mohammadi S; Sohrabi M; Golikand AN; Fakhri A
    J Photochem Photobiol B; 2016 Aug; 161():217-21. PubMed ID: 27262854
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Self-assembled WO3-x hierarchical nanostructures for photothermal therapy with a 915 nm laser rather than the common 980 nm laser.
    Li B; Zhang Y; Zou R; Wang Q; Zhang B; An L; Yin F; Hua Y; Hu J
    Dalton Trans; 2014 Apr; 43(16):6244-50. PubMed ID: 24598863
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improved WO3 photocatalytic efficiency using ZrO2 and Ru for the degradation of carbofuran and ampicillin.
    Gar Alalm M; Ookawara S; Fukushi D; Sato A; Tawfik A
    J Hazard Mater; 2016 Jan; 302():225-231. PubMed ID: 26476309
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Visible-light active photocatalytic WO3 films loaded with Pt nanoparticles deposited by sputtering.
    Murata A; Oka N; Nakamura S; Shigesato Y
    J Nanosci Nanotechnol; 2012 Jun; 12(6):5082-6. PubMed ID: 22905581
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Remediation of 17-α-ethinylestradiol aqueous solution by photocatalysis and electrochemically-assisted photocatalysis using TiO2 and TiO2/WO3 electrodes irradiated by a solar simulator.
    Oliveira HG; Ferreira LH; Bertazzoli R; Longo C
    Water Res; 2015 Apr; 72():305-14. PubMed ID: 25238917
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Laser induced photocatalytic degradation of hazardous dye (Safranin-O) using self synthesized nanocrystalline WO3.
    Hayat K; Gondal MA; Khaled MM; Yamani ZH; Ahmed S
    J Hazard Mater; 2011 Feb; 186(2-3):1226-33. PubMed ID: 21177021
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.