BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 17626450)

  • 1. Effect of chlorination on Microcystis aeruginosa cell integrity and subsequent microcystin release and degradation.
    Daly RI; Ho L; Brookes JD
    Environ Sci Technol; 2007 Jun; 41(12):4447-53. PubMed ID: 17626450
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of oxidant demand on the release and degradation of microcystin-LR from Microcystis aeruginosa during oxidation.
    Zhang H; Dan Y; Adams CD; Shi H; Ma Y; Eichholz T
    Chemosphere; 2017 Aug; 181():562-568. PubMed ID: 28463731
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Impact of chlorine on the cell integrity and toxin release and degradation of colonial Microcystis.
    Fan J; Rao L; Chiu YT; Lin TF
    Water Res; 2016 Oct; 102():394-404. PubMed ID: 27393964
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of oxidant exposure on the release of intracellular microcystin, MIB, and geosmin from three cyanobacteria species.
    Wert EC; Korak JA; Trenholm RA; Rosario-Ortiz FL
    Water Res; 2014 Apr; 52():251-9. PubMed ID: 24289950
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Determining the fate of Microcystis aeruginosa cells and microcystin toxins following chloramination.
    Ho L; Kayal N; Trolio R; Newcombe G
    Water Sci Technol; 2010; 62(2):442-50. PubMed ID: 20651451
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effects of various control and water treatment processes on the membrane integrity and toxin fate of cyanobacteria.
    Fan J; Hobson P; Ho L; Daly R; Brookes J
    J Hazard Mater; 2014 Jan; 264():313-22. PubMed ID: 24316803
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Kinetics of reactions between chlorine and the cyanobacterial toxins microcystins.
    Acero JL; Rodriguez E; Meriluoto J
    Water Res; 2005 Apr; 39(8):1628-38. PubMed ID: 15878036
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chlorination of Microcystis aeruginosa: toxin release and oxidation, cellular chlorine demand and disinfection by-products formation.
    Zamyadi A; Fan Y; Daly RI; Prévost M
    Water Res; 2013 Mar; 47(3):1080-90. PubMed ID: 23245541
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluating the effectiveness of copper sulphate, chlorine, potassium permanganate, hydrogen peroxide and ozone on cyanobacterial cell integrity.
    Fan J; Ho L; Hobson P; Brookes J
    Water Res; 2013 Sep; 47(14):5153-64. PubMed ID: 23866133
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Using digital flow cytometry to assess the degradation of three cyanobacteria species after oxidation processes.
    Wert EC; Dong MM; Rosario-Ortiz FL
    Water Res; 2013 Jul; 47(11):3752-61. PubMed ID: 23726712
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fate of toxic cyanobacterial cells and disinfection by-products formation after chlorination.
    Zamyadi A; Ho L; Newcombe G; Bustamante H; Prévost M
    Water Res; 2012 Apr; 46(5):1524-35. PubMed ID: 21820143
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Colonial cell disaggregation and intracellular microcystin release following chlorination of naturally occurring Microcystis.
    He X; Wert EC
    Water Res; 2016 Sep; 101():10-16. PubMed ID: 27240297
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Delayed Release of Intracellular Microcystin Following Partial Oxidation of Cultured and Naturally Occurring Cyanobacteria.
    Greenstein KE; Zamyadi A; Glover CM; Adams C; Rosenfeldt E; Wert EC
    Toxins (Basel); 2020 May; 12(5):. PubMed ID: 32443714
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chlorination of Microcystis aeruginosa suspension: cell lysis, toxin release and degradation.
    Ma M; Liu R; Liu H; Qu J
    J Hazard Mater; 2012 May; 217-218():279-85. PubMed ID: 22483441
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Degradation of cyanobacterial toxin, microcystin LR, using chemical oxidants.
    Pyo D; Yoo J
    J Immunoassay Immunochem; 2008; 29(3):211-9. PubMed ID: 18569370
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparing the effects of chlorination on membrane integrity and toxin fate of high- and low-viability cyanobacteria.
    Li X; Chen S; Zeng J; Song W; Yu X
    Water Res; 2020 Jun; 177():115769. PubMed ID: 32278164
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Occurrence of cyanobacteria and microcystin toxins in raw and treated waters of the Nile River, Egypt: implication for water treatment and human health.
    Mohamed ZA; Deyab MA; Abou-Dobara MI; El-Sayed AK; El-Raghi WM
    Environ Sci Pollut Res Int; 2015 Aug; 22(15):11716-27. PubMed ID: 25854210
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A new morphospecies of Microcystis sp. forming bloom in the Cheffia dam (Algeria): seasonal variation of microcystin concentrations in raw water and their removal in a full-scale treatment plant.
    Nasri H; Bouaïcha N; Harche MK
    Environ Toxicol; 2007 Aug; 22(4):347-56. PubMed ID: 17607726
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of chlorine dioxide on cyanobacterial cell integrity, toxin degradation and disinfection by-product formation.
    Zhou S; Shao Y; Gao N; Li L; Deng J; Zhu M; Zhu S
    Sci Total Environ; 2014 Jun; 482-483():208-13. PubMed ID: 24651056
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The interaction between nitrobenzene and Microcystis aeruginosa and its potential to impact water quality.
    Liu Z; Cui F; Ma H; Fan Z; Zhao Z; Hou Z; Liu D; Jia X
    Chemosphere; 2013 Aug; 92(9):1201-6. PubMed ID: 23694734
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.