BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

277 related articles for article (PubMed ID: 17626614)

  • 41. Grouping together highly diverged PD-(D/E)XK nucleases and identification of novel superfamily members using structure-guided alignment of sequence profiles.
    Bujnicki JM; Rychlewski L
    J Mol Microbiol Biotechnol; 2001 Jan; 3(1):69-72. PubMed ID: 11200231
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Generation of the BfiI restriction endonuclease from the fusion of a DNA recognition domain to a non-specific nuclease from the phospholipase D superfamily.
    Zaremba M; Urbanke C; Halford SE; Siksnys V
    J Mol Biol; 2004 Feb; 336(1):81-92. PubMed ID: 14741205
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A unified genetic, computational and experimental framework identifies functionally relevant residues of the homing endonuclease I-BmoI.
    Kleinstiver BP; Fernandes AD; Gloor GB; Edgell DR
    Nucleic Acids Res; 2010 Apr; 38(7):2411-27. PubMed ID: 20061372
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Expression and purification of BmrI restriction endonuclease and its N-terminal cleavage domain variants.
    Bao Y; Higgins L; Zhang P; Chan SH; Laget S; Sweeney S; Lunnen K; Xu SY
    Protein Expr Purif; 2008 Mar; 58(1):42-52. PubMed ID: 18164625
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Structure of Xanthomonas axonopodis pv. citri YaeQ reveals a new compact protein fold built around a variation of the PD-(D/E)XK nuclease motif.
    Guzzo CR; Nagem RA; Barbosa JA; Farah CS
    Proteins; 2007 Nov; 69(3):644-51. PubMed ID: 17623842
    [TBL] [Abstract][Full Text] [Related]  

  • 46. DNA recognition by the SwaI restriction endonuclease involves unusual distortion of an 8 base pair A:T-rich target.
    Shen BW; Heiter DF; Lunnen KD; Wilson GG; Stoddard BL
    Nucleic Acids Res; 2017 Feb; 45(3):1516-1528. PubMed ID: 28180307
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Construction of an overproducing strain, purification, and biochemical characterization of the 6His-Eco29kI restriction endonuclease.
    Nikitin D; Mokrishcheva M; Denjmukhametov M; Pertzev A; Zakharova M; Solonin A
    Protein Expr Purif; 2003 Jul; 30(1):26-31. PubMed ID: 12821318
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Homing endonuclease structure and function.
    Stoddard BL
    Q Rev Biophys; 2005 Feb; 38(1):49-95. PubMed ID: 16336743
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Perpetuating the homing endonuclease life cycle: identification of mutations that modulate and change I-TevI cleavage preference.
    Roy AC; Wilson GG; Edgell DR
    Nucleic Acids Res; 2016 Sep; 44(15):7350-9. PubMed ID: 27387281
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Ca(2+) binding to the ExDxD motif regulates the DNA cleavage specificity of a promiscuous endonuclease.
    Nagamalleswari E; Vasu K; Nagaraja V
    Biochemistry; 2012 Nov; 51(44):8939-49. PubMed ID: 23072305
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The link between restriction endonuclease fidelity and oligomeric state: a study with Bse634I.
    Zaremba M; Sasnauskas G; Siksnys V
    FEBS Lett; 2012 Sep; 586(19):3324-9. PubMed ID: 22828280
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Alternative arrangements of catalytic residues at the active sites of restriction enzymes.
    Tamulaitis G; Solonin AS; Siksnys V
    FEBS Lett; 2002 May; 518(1-3):17-22. PubMed ID: 11997010
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Biochemical and mutagenic analysis of I-CreII reveals distinct but important roles for both the H-N-H and GIY-YIG motifs.
    Corina LE; Qiu W; Desai A; Herrin DL
    Nucleic Acids Res; 2009 Sep; 37(17):5810-21. PubMed ID: 19651876
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Generation of DNA cleavage specificities of type II restriction endonucleases by reassortment of target recognition domains.
    Jurenaite-Urbanaviciene S; Serksnaite J; Kriukiene E; Giedriene J; Venclovas C; Lubys A
    Proc Natl Acad Sci U S A; 2007 Jun; 104(25):10358-63. PubMed ID: 17553965
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Mutability of an HNH nuclease imidazole general base and exchange of a deprotonation mechanism.
    Eastberg JH; Eklund J; Monnat R; Stoddard BL
    Biochemistry; 2007 Jun; 46(24):7215-25. PubMed ID: 17516660
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Rational engineering of sequence specificity in R.MwoI restriction endonuclease.
    Skowronek K; Boniecki MJ; Kluge B; Bujnicki JM
    Nucleic Acids Res; 2012 Sep; 40(17):8579-92. PubMed ID: 22735699
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Two-domain structure of the td intron-encoded endonuclease I-TevI correlates with the two-domain configuration of the homing site.
    Derbyshire V; Kowalski JC; Dansereau JT; Hauer CR; Belfort M
    J Mol Biol; 1997 Feb; 265(5):494-506. PubMed ID: 9048944
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Intronic GIY-YIG endonuclease gene in the mitochondrial genome of Podospora curvicolla: evidence for mobility.
    Saguez C; Lecellier G; Koll F
    Nucleic Acids Res; 2000 Mar; 28(6):1299-306. PubMed ID: 10684923
    [TBL] [Abstract][Full Text] [Related]  

  • 59. UbaLAI is a monomeric Type IIE restriction enzyme.
    Sasnauskas G; Tamulaitiene G; Tamulaitis G; Calyševa J; Laime M; Rimšeliene R; Lubys A; Siksnys V
    Nucleic Acids Res; 2017 Sep; 45(16):9583-9594. PubMed ID: 28934493
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Restriction endonuclease BpuJI specific for the 5'-CCCGT sequence is related to the archaeal Holliday junction resolvase family.
    Sukackaite R; Lagunavicius A; Stankevicius K; Urbanke C; Venclovas C; Siksnys V
    Nucleic Acids Res; 2007; 35(7):2377-89. PubMed ID: 17392342
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.