BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

225 related articles for article (PubMed ID: 17626880)

  • 1. Cleaving mercury-alkyl bonds: a functional model for mercury detoxification by MerB.
    Melnick JG; Parkin G
    Science; 2007 Jul; 317(5835):225-7. PubMed ID: 17626880
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthesis, structure, and reactivity of two-coordinate mercury alkyl compounds with sulfur ligands: relevance to mercury detoxification.
    Melnick JG; Yurkerwich K; Parkin G
    Inorg Chem; 2009 Jul; 48(14):6763-72. PubMed ID: 20507113
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biochemistry. Toward methylmercury bioremediation.
    Omichinski JG
    Science; 2007 Jul; 317(5835):205-6. PubMed ID: 17626871
    [No Abstract]   [Full Text] [Related]  

  • 4. A stable mercury-containing complex of the organomercurial lyase MerB: catalysis, product release, and direct transfer to MerA.
    Benison GC; Di Lello P; Shokes JE; Cosper NJ; Scott RA; Legault P; Omichinski JG
    Biochemistry; 2004 Jul; 43(26):8333-45. PubMed ID: 15222746
    [TBL] [Abstract][Full Text] [Related]  

  • 5. NMR structural studies reveal a novel protein fold for MerB, the organomercurial lyase involved in the bacterial mercury resistance system.
    Di Lello P; Benison GC; Valafar H; Pitts KE; Summers AO; Legault P; Omichinski JG
    Biochemistry; 2004 Jul; 43(26):8322-32. PubMed ID: 15222745
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural and Biochemical Characterization of a Copper-Binding Mutant of the Organomercurial Lyase MerB: Insight into the Key Role of the Active Site Aspartic Acid in Hg-Carbon Bond Cleavage and Metal Binding Specificity.
    Wahba HM; Lecoq L; Stevenson M; Mansour A; Cappadocia L; Lafrance-Vanasse J; Wilkinson KJ; Sygusch J; Wilcox DE; Omichinski JG
    Biochemistry; 2016 Feb; 55(7):1070-81. PubMed ID: 26820485
    [TBL] [Abstract][Full Text] [Related]  

  • 7. DFT studies of the degradation mechanism of methyl mercury activated by a sulfur-rich ligand.
    Li X; Liao RZ; Zhou W; Chen G
    Phys Chem Chem Phys; 2010 Apr; 12(16):3961-71. PubMed ID: 20379488
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Applications of Tripodal [S(3)] and [Se(3)] L(2)X Donor Ligands to Zinc, Cadmium and Mercury Chemistry: Organometallic and Bioinorganic Perspectives.
    Parkin G
    New J Chem; 2007; 31(12):1996-2014. PubMed ID: 19484137
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Crystal structures of the organomercurial lyase MerB in its free and mercury-bound forms: insights into the mechanism of methylmercury degradation.
    Lafrance-Vanasse J; Lefebvre M; Di Lello P; Sygusch J; Omichinski JG
    J Biol Chem; 2009 Jan; 284(2):938-44. PubMed ID: 19004822
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Methyl and arylchalcogenolate complexes of cadmium in a sulfur rich coordination environment: syntheses and structural characterization of the tris(2-mercapto-1-tert-butylimidazolyl)hydroborato cadmium complexes [Tm(Bu(t))]CdMe, and [Tm(Bu(t))]CdEAr (E = O, S, Se, Te) and analysis of the bonding in chalcogenolate compounds.
    Melnick JG; Parkin G
    Dalton Trans; 2006 Sep; (35):4207-10. PubMed ID: 16932812
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phytodetoxification of hazardous organomercurials by genetically engineered plants.
    Bizily SP; Rugh CL; Meagher RB
    Nat Biotechnol; 2000 Feb; 18(2):213-7. PubMed ID: 10657131
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cleaving C-Hg bonds: two thiolates are better than one.
    Miller SM
    Nat Chem Biol; 2007 Sep; 3(9):537-8. PubMed ID: 17710098
    [No Abstract]   [Full Text] [Related]  

  • 13. Exchange of Alkyl and Tris(2-mercapto-1-
    Kreider-Mueller A; Quinlivan PJ; Rong Y; Owen JS; Parkin G
    J Organomet Chem; 2015 Sep; 792():177-183. PubMed ID: 26273109
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthesis and structures of cadmium carboxylate and thiocarboxylate compounds with a sulfur-rich coordination environment: carboxylate exchange kinetics involving tris(2-mercapto-1-t-butylimidazolyl)hydroborato cadmium complexes, [Tm(Bu(t))]Cd(O2CR).
    Kreider-Mueller A; Quinlivan PJ; Owen JS; Parkin G
    Inorg Chem; 2015 Apr; 54(8):3835-50. PubMed ID: 25826184
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanism of Hg-C protonolysis in the organomercurial lyase MerB.
    Parks JM; Guo H; Momany C; Liang L; Miller SM; Summers AO; Smith JC
    J Am Chem Soc; 2009 Sep; 131(37):13278-85. PubMed ID: 19719173
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Monovalent indium in a sulfur-rich coordination environment: synthesis, structure and reactivity of tris(2-mercapto-1-tert-butylimidazolyl)hydroborato indium, [TmBut]In.
    Yurkerwich K; Buccella D; Melnick JG; Parkin G
    Chem Commun (Camb); 2008 Jul; (28):3305-7. PubMed ID: 18622452
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Terminal nickel(ii) amide, alkoxide, and thiolate complexes containing amido diphosphine ligands of the type [N(o-C6H4PR2)2]- (R = Ph, (i)Pr, Cy).
    Liang LC; Chien PS; Lee PY; Lin JM; Huang YL
    Dalton Trans; 2008 Jul; (25):3320-7. PubMed ID: 18560664
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mercury-alkyl bond cleavage based on organomercury lyase.
    Strasdeit H
    Angew Chem Int Ed Engl; 2008; 47(5):828-30. PubMed ID: 18038443
    [No Abstract]   [Full Text] [Related]  

  • 19. Hg-C bond protonolysis by a functional model of bacterial enzyme organomercurial lyase MerB.
    Karri R; Das R; Rai RK; Gopalakrishnan A; Roy G
    Chem Commun (Camb); 2020 Aug; 56(65):9280-9283. PubMed ID: 32558833
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of a transgenic tobacco plant for phytoremediation of methylmercury pollution.
    Nagata T; Morita H; Akizawa T; Pan-Hou H
    Appl Microbiol Biotechnol; 2010 Jun; 87(2):781-6. PubMed ID: 20393701
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.