BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

259 related articles for article (PubMed ID: 17627308)

  • 1. Dye-sensitized nanocrystalline solar cells.
    Peter LM
    Phys Chem Chem Phys; 2007 Jun; 9(21):2630-42. PubMed ID: 17627308
    [TBL] [Abstract][Full Text] [Related]  

  • 2. "Sticky electrons" transport and interfacial transfer of electrons in the dye-sensitized solar cell.
    Peter L
    Acc Chem Res; 2009 Nov; 42(11):1839-47. PubMed ID: 19637905
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characteristics of the iodide/triiodide redox mediator in dye-sensitized solar cells.
    Boschloo G; Hagfeldt A
    Acc Chem Res; 2009 Nov; 42(11):1819-26. PubMed ID: 19845388
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of sodium cations of N3 dye on the photovoltaic performance and stability of dye-sensitized solar cells.
    Andrade L; Zakeeruddin SM; Nazeeruddin MK; Ribeiro HA; Mendes A; Grätzel M
    Chemphyschem; 2009 May; 10(7):1117-24. PubMed ID: 19308974
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Kinetic and energetic paradigms for dye-sensitized solar cells: moving from the ideal to the real.
    O'Regan BC; Durrant JR
    Acc Chem Res; 2009 Nov; 42(11):1799-808. PubMed ID: 19754041
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hydrochloric acid treatment of TiO2 electrode for quasi-solid-state dye-sensitized solar cells.
    Park DW; Park KH; Lee JW; Hwang KJ; Choi YK
    J Nanosci Nanotechnol; 2007 Nov; 7(11):3722-6. PubMed ID: 18047045
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recent developments in solid-state dye-sensitized solar cells.
    Yum JH; Chen P; Grätzel M; Nazeeruddin MK
    ChemSusChem; 2008; 1(8-9):699-707. PubMed ID: 18686289
    [TBL] [Abstract][Full Text] [Related]  

  • 8. How does back-reaction at the conducting glass substrate influence the dynamic photovoltage response of nanocrystalline dye-sensitized solar cells?
    Cameron PJ; Peter LM
    J Phys Chem B; 2005 Apr; 109(15):7392-8. PubMed ID: 16851846
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Direct measurement of the temperature coefficient of the electron quasi-fermi level in dye-sensitized nanocrystalline solar cells using a titanium sensor electrode.
    Lobato K; Peter LM
    J Phys Chem B; 2006 Nov; 110(43):21920-3. PubMed ID: 17064159
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhanced performance of supported HfO2 counter electrodes for redox couples used in dye-sensitized solar cells.
    Yun S; Pu H; Chen J; Hagfeldt A; Ma T
    ChemSusChem; 2014 Feb; 7(2):442-50. PubMed ID: 24399514
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interfacial confined formation of mesoporous spherical TiO2 nanostructures with improved photoelectric conversion efficiency.
    Shao W; Gu F; Li C; Lu M
    Inorg Chem; 2010 Jun; 49(12):5453-9. PubMed ID: 20507078
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Application of highly ordered TiO2 nanotube arrays in flexible dye-sensitized solar cells.
    Kuang D; Brillet J; Chen P; Takata M; Uchida S; Miura H; Sumioka K; Zakeeruddin SM; Grätzel M
    ACS Nano; 2008 Jun; 2(6):1113-6. PubMed ID: 19206327
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ordered mesoporous tungsten suboxide counter electrode for highly efficient iodine-free electrolyte-based dye-sensitized solar cells.
    Jeong I; Jo C; Anthonysamy A; Kim JM; Kang E; Hwang J; Ramasamy E; Rhee SW; Kim JK; Ha KS; Jun KW; Lee J
    ChemSusChem; 2013 Feb; 6(2):299-307. PubMed ID: 23281317
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Solid-state dye-sensitized solar cells using polymerized ionic liquid electrolyte with platinum-free counter electrode.
    Kawano R; Katakabe T; Shimosawa H; Nazeeruddin MK; Grätzel M; Matsui H; Kitamura T; Tanabe N; Watanabe M
    Phys Chem Chem Phys; 2010 Feb; 12(8):1916-21. PubMed ID: 20145859
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stepped light-induced transient measurements of photocurrent and voltage in dye-sensitized solar cells: application for highly viscous electrolyte systems.
    Nakade S; Kanzaki T; Wada Y; Yanagida S
    Langmuir; 2005 Nov; 21(23):10803-7. PubMed ID: 16262355
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Direct measurement of the internal electron quasi-Fermi level in dye sensitized solar cells using a titanium secondary electrode.
    Lobato K; Peter LM; Würfel U
    J Phys Chem B; 2006 Aug; 110(33):16201-4. PubMed ID: 16913742
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A dendritic oligothiophene ruthenium sensitizer for stable dye-sensitized solar cells.
    Sauvage F; Fischer MK; Mishra A; Zakeeruddin SM; Nazeeruddin MK; Bäuerle P; Grätzel M
    ChemSusChem; 2009; 2(8):761-8. PubMed ID: 19569164
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electron injection at dye-sensitized semiconductor electrodes.
    Watson DF; Meyer GJ
    Annu Rev Phys Chem; 2005; 56():119-56. PubMed ID: 15796698
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microstructure design of nanoporous TiO2 photoelectrodes for dye-sensitized solar cell modules.
    Hu L; Dai S; Weng J; Xiao S; Sui Y; Huang Y; Chen S; Kong F; Pan X; Liang L; Wang K
    J Phys Chem B; 2007 Jan; 111(2):358-62. PubMed ID: 17214486
    [TBL] [Abstract][Full Text] [Related]  

  • 20. One-dimensional and (001) facetted nanostructured TiO2 photoanodes for dye-sensitized solar cells.
    Lin H; Wang X; Hao F
    Chimia (Aarau); 2013; 67(3):136-41. PubMed ID: 23574952
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.