BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 17627860)

  • 1. Improvement of a CrtO-type of beta-carotene ketolase for canthaxanthin production in Methylomonas sp.
    Tang XS; Shyr J; Tao L; Sedkova N; Cheng Q
    Metab Eng; 2007 Jul; 9(4):348-54. PubMed ID: 17627860
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Novel beta-carotene ketolases from non-photosynthetic bacteria for canthaxanthin synthesis.
    Tao L; Cheng Q
    Mol Genet Genomics; 2004 Dec; 272(5):530-7. PubMed ID: 15538629
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of two beta-carotene ketolases, CrtO and CrtW, by complementation analysis in Escherichia coli.
    Choi SK; Harada H; Matsuda S; Misawa N
    Appl Microbiol Biotechnol; 2007 Jul; 75(6):1335-41. PubMed ID: 17415558
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Construction of carotenoid biosynthetic pathways through chromosomal integration in methane-utilizing bacterium Methylomonas sp. strain 16a.
    Ye RW; Kelly K
    Methods Mol Biol; 2012; 892():185-95. PubMed ID: 22623303
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Construction of the astaxanthin biosynthetic pathway in a methanotrophic bacterium Methylomonas sp. strain 16a.
    Ye RW; Yao H; Stead K; Wang T; Tao L; Cheng Q; Sharpe PL; Suh W; Nagel E; Arcilla D; Dragotta D; Miller ES
    J Ind Microbiol Biotechnol; 2007 Apr; 34(4):289-99. PubMed ID: 17205350
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of cyanobacterial carotenoid ketolase CrtW and hydroxylase CrtR by complementation analysis in Escherichia coli.
    Makino T; Harada H; Ikenaga H; Matsuda S; Takaichi S; Shindo K; Sandmann G; Ogata T; Misawa N
    Plant Cell Physiol; 2008 Dec; 49(12):1867-78. PubMed ID: 18987067
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improved production of echinenone and canthaxanthin in transgenic Nostoc sp. PCC 7120 overexpressing a heterologous crtO gene from Nostoc flagelliforme.
    Gao X; Xu H; Zhu Z; She Y; Ye S
    Microbiol Res; 2020 Jun; 236():126455. PubMed ID: 32179389
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cloning of two carotenoid ketolase genes from Nostoc punctiforme for the heterologous production of canthaxanthin and astaxanthin.
    Steiger S; Sandmann G
    Biotechnol Lett; 2004 May; 26(10):813-7. PubMed ID: 15269553
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mutational and functional analysis of the beta-carotene ketolase involved in the production of canthaxanthin and astaxanthin.
    Ye RW; Stead KJ; Yao H; He H
    Appl Environ Microbiol; 2006 Sep; 72(9):5829-37. PubMed ID: 16957201
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multiple ketolases involved in light regulation of canthaxanthin biosynthesis in Nostoc punctiforme PCC 73102.
    Schöpf L; Mautz J; Sandmann G
    Planta; 2013 May; 237(5):1279-85. PubMed ID: 23361890
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A new type of asymmetrically acting beta-carotene ketolase is required for the synthesis of echinenone in the cyanobacterium Synechocystis sp. PCC 6803.
    Fernández-González B; Sandmann G; Vioque A
    J Biol Chem; 1997 Apr; 272(15):9728-33. PubMed ID: 9092504
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Expression of bacterial hemoglobin genes to improve astaxanthin production in a methanotrophic bacterium Methylomonas sp.
    Tao L; Sedkova N; Yao H; Ye RW; Sharpe PL; Cheng Q
    Appl Microbiol Biotechnol; 2007 Mar; 74(3):625-33. PubMed ID: 17103157
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The cyanobacterium Anabaena sp. PCC 7120 has two distinct beta-carotene ketolases: CrtO for echinenone and CrtW for ketomyxol synthesis.
    Mochimaru M; Masukawa H; Takaichi S
    FEBS Lett; 2005 Nov; 579(27):6111-4. PubMed ID: 16242129
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A comparative transcriptome analysis of the novel obligate methanotroph Methylomonas sp. DH-1 reveals key differences in transcriptional responses in C1 and secondary metabolite pathways during growth on methane and methanol.
    Nguyen AD; Kim D; Lee EY
    BMC Genomics; 2019 Feb; 20(1):130. PubMed ID: 30755173
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Use of transposon promoter-probe vectors in the metabolic engineering of the obligate methanotroph Methylomonas sp. strain 16a for enhanced C40 carotenoid synthesis.
    Sharpe PL; Dicosimo D; Bosak MD; Knoke K; Tao L; Cheng Q; Ye RW
    Appl Environ Microbiol; 2007 Mar; 73(6):1721-8. PubMed ID: 17261513
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Catalytic properties and reaction mechanism of the CrtO carotenoid ketolase from the cyanobacterium Synechocystis sp. PCC 6803.
    Breitenbach J; Gerjets T; Sandmann G
    Arch Biochem Biophys; 2013 Jan; 529(2):86-91. PubMed ID: 23220023
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cloning and expression in Escherichia coli of the gene encoding beta-C-4-oxygenase, that converts beta-carotene to the ketocarotenoid canthaxanthin in Haematococcus pluvialis.
    Lotan T; Hirschberg J
    FEBS Lett; 1995 May; 364(2):125-8. PubMed ID: 7750556
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Canthaxanthin production with modified Mucor circinelloides strains.
    Papp T; Csernetics A; Nagy G; Bencsik O; Iturriaga EA; Eslava AP; Vágvölgyi C
    Appl Microbiol Biotechnol; 2013 Jun; 97(11):4937-50. PubMed ID: 23224586
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of growth temperature on biosynthesis and accumulation of carotenoids in cyanobacterium Anabaena sp. PCC 7120 under diazotrophic conditions.
    Kłodawska K; Bujas A; Turos-Cabal M; Żbik P; Fu P; Malec P
    Microbiol Res; 2019 Sep; 226():34-40. PubMed ID: 31284942
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metabolic engineering for synthesis of aryl carotenoids in Rhodococcus.
    Tao L; Wagner LW; Rouvière PE; Cheng Q
    Appl Microbiol Biotechnol; 2006 Mar; 70(2):222-8. PubMed ID: 16133327
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.