These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
411 related articles for article (PubMed ID: 17627910)
1. Processing and biocompatibility evaluation of laser processed porous titanium. Xue W; Krishna BV; Bandyopadhyay A; Bose S Acta Biomater; 2007 Nov; 3(6):1007-18. PubMed ID: 17627910 [TBL] [Abstract][Full Text] [Related]
2. Structural, mechanical and in vitro characterization of individually structured Ti-6Al-4V produced by direct laser forming. Hollander DA; von Walter M; Wirtz T; Sellei R; Schmidt-Rohlfing B; Paar O; Erli HJ Biomaterials; 2006 Mar; 27(7):955-63. PubMed ID: 16115681 [TBL] [Abstract][Full Text] [Related]
3. Novel production method and in-vitro cell compatibility of porous Ti-6Al-4V alloy disk for hard tissue engineering. Bhattarai SR; Khalil KA; Dewidar M; Hwang PH; Yi HK; Kim HY J Biomed Mater Res A; 2008 Aug; 86(2):289-99. PubMed ID: 17957720 [TBL] [Abstract][Full Text] [Related]
4. Human alveolar bone cell proliferation, expression of osteoblastic phenotype, and matrix mineralization on porous titanium produced by powder metallurgy. Rosa AL; Crippa GE; de Oliveira PT; Taba M; Lefebvre LP; Beloti MM Clin Oral Implants Res; 2009 May; 20(5):472-81. PubMed ID: 19250245 [TBL] [Abstract][Full Text] [Related]
5. Spark plasma sintering synthesis of porous nanocrystalline titanium alloys for biomedical applications. Nicula R; Lüthen F; Stir M; Nebe B; Burkel E Biomol Eng; 2007 Nov; 24(5):564-7. PubMed ID: 17869173 [TBL] [Abstract][Full Text] [Related]
6. Ti6Ta4Sn alloy and subsequent scaffolding for bone tissue engineering. Li Y; Xiong J; Wong CS; Hodgson PD; Wen C Tissue Eng Part A; 2009 Oct; 15(10):3151-9. PubMed ID: 19351266 [TBL] [Abstract][Full Text] [Related]
7. Low stiffness porous Ti structures for load-bearing implants. Krishna BV; Bose S; Bandyopadhyay A Acta Biomater; 2007 Nov; 3(6):997-1006. PubMed ID: 17532277 [TBL] [Abstract][Full Text] [Related]
8. Development of biomedical porous titanium filled with medical polymer by in-situ polymerization of monomer solution infiltrated into pores. Nakai M; Niinomi M; Akahori T; Tsutsumi H; Itsuno S; Haraguchi N; Itoh Y; Ogasawara T; Onishi T; Shindoh T J Mech Behav Biomed Mater; 2010 Jan; 3(1):41-50. PubMed ID: 19878901 [TBL] [Abstract][Full Text] [Related]
9. Porous TiNbZr alloy scaffolds for biomedical applications. Wang X; Li Y; Xiong J; Hodgson PD; Wen C Acta Biomater; 2009 Nov; 5(9):3616-24. PubMed ID: 19505597 [TBL] [Abstract][Full Text] [Related]
10. Mechanical properties and in vitro biocompatibility of porous zein scaffolds. Gong S; Wang H; Sun Q; Xue ST; Wang JY Biomaterials; 2006 Jul; 27(20):3793-9. PubMed ID: 16527348 [TBL] [Abstract][Full Text] [Related]
11. Bioactive Ti metal analogous to human cancellous bone: Fabrication by selective laser melting and chemical treatments. Pattanayak DK; Fukuda A; Matsushita T; Takemoto M; Fujibayashi S; Sasaki K; Nishida N; Nakamura T; Kokubo T Acta Biomater; 2011 Mar; 7(3):1398-406. PubMed ID: 20883832 [TBL] [Abstract][Full Text] [Related]
12. Three-dimensional growth of differentiating MC3T3-E1 pre-osteoblasts on porous titanium scaffolds. St-Pierre JP; Gauthier M; Lefebvre LP; Tabrizian M Biomaterials; 2005 Dec; 26(35):7319-28. PubMed ID: 16000220 [TBL] [Abstract][Full Text] [Related]
13. Corrosion resistance and biocompatibility of a new porous surface for titanium implants. Simon M; Lagneau C; Moreno J; Lissac M; Dalard F; Grosgogeat B Eur J Oral Sci; 2005 Dec; 113(6):537-45. PubMed ID: 16324146 [TBL] [Abstract][Full Text] [Related]
14. Preparation and properties of biomedical porous titanium alloys by gelcasting. Yang D; Shao H; Guo Z; Lin T; Fan L Biomed Mater; 2011 Aug; 6(4):045010. PubMed ID: 21747152 [TBL] [Abstract][Full Text] [Related]
15. Fabrication of compositionally and structurally graded Ti-TiO2 structures using laser engineered net shaping (LENS). Balla VK; DeVasConCellos PD; Xue W; Bose S; Bandyopadhyay A Acta Biomater; 2009 Jun; 5(5):1831-7. PubMed ID: 19233752 [TBL] [Abstract][Full Text] [Related]
16. In vivo performance of selective electron beam-melted Ti-6Al-4V structures. Ponader S; von Wilmowsky C; Widenmayer M; Lutz R; Heinl P; Körner C; Singer RF; Nkenke E; Neukam FW; Schlegel KA J Biomed Mater Res A; 2010 Jan; 92(1):56-62. PubMed ID: 19165781 [TBL] [Abstract][Full Text] [Related]
17. Characterization of the structure and permeability of titanium foams for spinal fusion devices. Singh R; Lee PD; Lindley TC; Dashwood RJ; Ferrie E; Imwinkelried T Acta Biomater; 2009 Jan; 5(1):477-87. PubMed ID: 18657494 [TBL] [Abstract][Full Text] [Related]
18. Effects of topographical surface modifications of electron beam melted Ti-6Al-4V titanium on human fetal osteoblasts. Ponader S; Vairaktaris E; Heinl P; Wilmowsky CV; Rottmair A; Körner C; Singer RF; Holst S; Schlegel KA; Neukam FW; Nkenke E J Biomed Mater Res A; 2008 Mar; 84(4):1111-9. PubMed ID: 17685409 [TBL] [Abstract][Full Text] [Related]
19. Mechanical properties and bioactive surface modification via alkali-heat treatment of a porous Ti-18Nb-4Sn alloy for biomedical applications. Xiong J; Li Y; Wang X; Hodgson P; Wen C Acta Biomater; 2008 Nov; 4(6):1963-8. PubMed ID: 18524702 [TBL] [Abstract][Full Text] [Related]
20. The biocompatibility of dense and porous Nickel-Titanium produced by selective laser melting. Habijan T; Haberland C; Meier H; Frenzel J; Wittsiepe J; Wuwer C; Greulich C; Schildhauer TA; Köller M Mater Sci Eng C Mater Biol Appl; 2013 Jan; 33(1):419-26. PubMed ID: 25428090 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]