These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

298 related articles for article (PubMed ID: 1762795)

  • 41. The First Application of the Two-Dimensional Scanning Videokymography in Excised Canine Larynx Model.
    Wang SG; Park HJ; Cho JK; Jang JY; Lee WY; Lee BJ; Lee JC; Cha W
    J Voice; 2016 Jan; 30(1):1-4. PubMed ID: 26296852
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Medial surface dynamics of an in vivo canine vocal fold during phonation.
    Döllinger M; Berry DA; Berke GS
    J Acoust Soc Am; 2005 May; 117(5):3174-83. PubMed ID: 15957785
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Modulating phonation through alteration of vocal fold medial surface contour.
    Mau T; Muhlestein J; Callahan S; Chan RW
    Laryngoscope; 2012 Sep; 122(9):2005-14. PubMed ID: 22865592
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Laryngeal modeling: theoretical, in vitro, in vivo.
    Berke GS; Moore DM; Hantke DR; Hanson DG; Gerratt BR; Burstein F
    Laryngoscope; 1987 Jul; 97(7 Pt 1):871-81. PubMed ID: 3600140
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A quantitative model of voice F0 control.
    Farley GR
    J Acoust Soc Am; 1994 Feb; 95(2):1017-29. PubMed ID: 8132896
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Experimental studies on the viscoelasticity of the vocal fold.
    Haji T; Mori K; Omori K; Isshiki N
    Acta Otolaryngol; 1992; 112(1):151-9. PubMed ID: 1575031
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Ex vivo perfused larynx model of phonation: preliminary study.
    Berke GS; Neubauer J; Berry DA; Ye M; Chhetri DK
    Ann Otol Rhinol Laryngol; 2007 Nov; 116(11):866-70. PubMed ID: 18074674
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Phonation Analysis Combined with 3D Reconstruction of the Thyroarytenoid Muscle in Aged Ovine Ex Vivo Larynx Models.
    Gerstenberger C; Döllinger M; Kniesburges S; Bubalo V; Karbiener M; Schlager H; Sadeghi H; Wendler O; Gugatschka M
    J Voice; 2018 Sep; 32(5):517-524. PubMed ID: 28964638
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Effects of cricothyroid and thyroarytenoid interaction on voice control: Muscle activity, vocal fold biomechanics, flow, and acoustics.
    Movahhedi M; Geng B; Xue Q; Zheng X
    J Acoust Soc Am; 2021 Jul; 150(1):29. PubMed ID: 34340476
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Rules for controlling low-dimensional vocal fold models with muscle activation.
    Titze IR; Story BH
    J Acoust Soc Am; 2002 Sep; 112(3 Pt 1):1064-76. PubMed ID: 12243155
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Investigating Laryngeal "Tilt" on Same-pitch Phonation-Preliminary Findings of Vocal Mode Metal and Density Parameters as Alternatives to Cricothyroid-Thyroarytenoid "Mix".
    Mathias Aaen ; McGlashan J; Sadolin C
    J Voice; 2019 Sep; 33(5):806.e9-806.e21. PubMed ID: 30122461
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The effect of subglottal resonance upon vocal fold vibration.
    Austin SF; Titze IR
    J Voice; 1997 Dec; 11(4):391-402. PubMed ID: 9422272
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Phonation Threshold Pressure Revisited: Effects of Intrinsic Laryngeal Muscle Activation.
    Azar SS; Chhetri DK
    Laryngoscope; 2022 Jul; 132(7):1427-1432. PubMed ID: 34784055
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Relationship between transglottal pressure and fundamental frequency of phonation--study using a rubber model.
    Owaki S; Kataoka H; Shimizu T
    J Voice; 2010 Mar; 24(2):127-32. PubMed ID: 19230603
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The effect of cricothyroid muscle action on the relation between subglottal pressure and fundamental frequency in an in vivo canine model.
    Hsiao TY; Liu CM; Luschei ES; Titze IR
    J Voice; 2001 Jun; 15(2):187-93. PubMed ID: 11411473
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Onset and offset phonation threshold flow in excised canine larynges.
    Regner MF; Tao C; Zhuang P; Jiang JJ
    Laryngoscope; 2008 Jul; 118(7):1313-7. PubMed ID: 18401267
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Quantitative evaluation of the effects of thyroarytenoid muscle activity upon pliability of vocal fold mucosa in an in vivo canine model.
    Yumoto E; Kadota Y
    Laryngoscope; 1997 Feb; 107(2):266-72. PubMed ID: 9023254
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Direct measurement of onset and offset phonation threshold pressure in normal subjects.
    Plant RL; Freed GL; Plant RE
    J Acoust Soc Am; 2004 Dec; 116(6):3640-6. PubMed ID: 15658714
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Inducing vocal register transition in an in vivo evoked phonation canine model.
    Hsiao TY; Liu CM; Hsu CJ; Lee SY; Lin KN
    J Formos Med Assoc; 2001 Aug; 100(8):543-7. PubMed ID: 11678005
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Two-dimensional analysis of vocal fold vibration in unilaterally atrophied larynges.
    Kobayashi J; Yumoto E; Hyodo M; Gyo K
    Laryngoscope; 2000 Mar; 110(3 Pt 1):440-6. PubMed ID: 10718435
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.