BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 17628093)

  • 1. Conformational substates of horse heart cytochrome c exhibit different thermal unfolding of the heme cavity.
    Schweitzer-Stenner R; Shah R; Hagarman A; Dragomir I
    J Phys Chem B; 2007 Aug; 111(32):9603-7. PubMed ID: 17628093
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The conformational manifold of ferricytochrome c explored by visible and far-UV electronic circular dichroism spectroscopy.
    Hagarman A; Duitch L; Schweitzer-Stenner R
    Biochemistry; 2008 Sep; 47(36):9667-77. PubMed ID: 18702508
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural changes of horse heart ferricytochrome C induced by changes of ionic strength and anion binding.
    Shah R; Schweitzer-Stenner R
    Biochemistry; 2008 May; 47(18):5250-7. PubMed ID: 18407664
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optical spectroscopic differentiation of various equilibrium denatured states of horse cytochrome c.
    Xu Q; Keiderling TA
    Biopolymers; 2004 Apr; 73(6):716-26. PubMed ID: 15048775
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural characterization of an equilibrium unfolding intermediate in cytochrome c.
    Latypov RF; Cheng H; Roder NA; Zhang J; Roder H
    J Mol Biol; 2006 Mar; 357(3):1009-25. PubMed ID: 16473367
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The stability of the cytochrome c scaffold as revealed by NMR spectroscopy.
    Berners-Price SJ; Bertini I; Gray HB; Spyroulias GA; Turano P
    J Inorg Biochem; 2004 May; 98(5):814-23. PubMed ID: 15134927
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A model for the misfolded bis-His intermediate of cytochrome c: the 1-56 N-fragment.
    Santoni E; Scatragli S; Sinibaldi F; Fiorucci L; Santucci R; Smulevich G
    J Inorg Biochem; 2004 Jun; 98(6):1067-77. PubMed ID: 15149817
    [TBL] [Abstract][Full Text] [Related]  

  • 8. How does reorganization energy change upon protein unfolding? Monitoring the structural perturbations in the heme cavity of cytochrome c.
    Shafiey H; Ghourchian H; Mogharrab N
    Biophys Chem; 2008 May; 134(3):225-31. PubMed ID: 18325656
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Internal electric field in cytochrome C explored by visible electronic circular dichroism spectroscopy.
    Schweitzer-Stenner R
    J Phys Chem B; 2008 Aug; 112(33):10358-66. PubMed ID: 18665633
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A unique molten globule state occurs during unfolding of cytochrome c by LiClO4 near physiological pH and temperature: structural and thermodynamic characterization.
    Moza B; Qureshi SH; Islam A; Singh R; Anjum F; Moosavi-Movahedi AA; Ahmad F
    Biochemistry; 2006 Apr; 45(14):4695-702. PubMed ID: 16584204
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Conformational substates of ferricytochrome c revealed by combined optical absorption and electronic circular dichroism spectroscopy at cryogenic temperature.
    Spilotros A; Levantino M; Cupane A
    Biophys Chem; 2010 Mar; 147(1-2):8-12. PubMed ID: 20022687
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A high-resolution probe of protein folding.
    Sagle LB; Zimmermann J; Dawson PE; Romesberg FE
    J Am Chem Soc; 2004 Mar; 126(11):3384-5. PubMed ID: 15025440
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optical band splitting and electronic perturbations of the heme chromophore in cytochrome C at room temperature probed by visible electronic circular dichroism spectroscopy.
    Dragomir I; Hagarman A; Wallace C; Schweitzer-Stenner R
    Biophys J; 2007 Feb; 92(3):989-98. PubMed ID: 17098790
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Many residues in cytochrome c populate alternative states under equilibrium conditions.
    Williamson MP
    Proteins; 2003 Nov; 53(3):731-9. PubMed ID: 14579363
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The pH dependence of the 695 nm charge transfer band reveals the population of an intermediate state of the alkaline transition of ferricytochrome c at low ion concentrations.
    Verbaro D; Hagarman A; Soffer J; Schweitzer-Stenner R
    Biochemistry; 2009 Apr; 48(13):2990-6. PubMed ID: 19222214
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The earliest events in protein folding: a structural requirement for ultrafast folding in cytochrome C.
    Chen E; Goldbeck RA; Kliger DS
    J Am Chem Soc; 2004 Sep; 126(36):11175-81. PubMed ID: 15355098
    [TBL] [Abstract][Full Text] [Related]  

  • 17. On the application of CZE to the study of protein denaturation.
    Piaggio MV; Peirotti MB; Deiber JA
    Electrophoresis; 2007 Jul; 28(13):2223-34. PubMed ID: 17539037
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Proteolysis as a probe of thermal unfolding of cytochrome c.
    Wang L; Chen RX; Kallenbach NR
    Proteins; 1998 Mar; 30(4):435-41. PubMed ID: 9533627
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Volume and compressibility changes accompanying thermally-induced native-to-unfolded and molten globule-to-unfolded transitions of cytochrome c: a high pressure study.
    Dubins DN; Filfil R; Macgregor RB; Chalikian TV
    Biochemistry; 2003 Jul; 42(29):8671-8. PubMed ID: 12873126
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The alkali molten globule state of horse ferricytochrome c: observation of cold denaturation.
    Kumar R; Prabhu NP; Rao DK; Bhuyan AK
    J Mol Biol; 2006 Dec; 364(3):483-95. PubMed ID: 17027030
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.