These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
131 related articles for article (PubMed ID: 17628477)
1. Structural basis for the recognition of para-benzoyl-L-phenylalanine by evolved aminoacyl-tRNA synthetases. Liu W; Alfonta L; Mack AV; Schultz PG Angew Chem Int Ed Engl; 2007; 46(32):6073-5. PubMed ID: 17628477 [No Abstract] [Full Text] [Related]
2. Structural characterization of a p-acetylphenylalanyl aminoacyl-tRNA synthetase. Turner JM; Graziano J; Spraggon G; Schultz PG J Am Chem Soc; 2005 Nov; 127(43):14976-7. PubMed ID: 16248607 [TBL] [Abstract][Full Text] [Related]
3. The de novo engineering of pyrrolysyl-tRNA synthetase for genetic incorporation of L-phenylalanine and its derivatives. Wang YS; Russell WK; Wang Z; Wan W; Dodd LE; Pai PJ; Russell DH; Liu WR Mol Biosyst; 2011 Mar; 7(3):714-7. PubMed ID: 21234492 [TBL] [Abstract][Full Text] [Related]
4. Structural basis for discrimination of L-phenylalanine from L-tyrosine by phenylalanyl-tRNA synthetase. Kotik-Kogan O; Moor N; Tworowski D; Safro M Structure; 2005 Dec; 13(12):1799-807. PubMed ID: 16338408 [TBL] [Abstract][Full Text] [Related]
5. [tRNA recognition and evolution of aminoacyl-tRNA synthetases]. Nureki O Tanpakushitsu Kakusan Koso; 2001 Aug; 46(11 Suppl):1651-60. PubMed ID: 11579562 [No Abstract] [Full Text] [Related]
6. Structural bases of transfer RNA-dependent amino acid recognition and activation by glutamyl-tRNA synthetase. Sekine S; Shichiri M; Bernier S; ChĂȘnevert R; Lapointe J; Yokoyama S Structure; 2006 Dec; 14(12):1791-9. PubMed ID: 17161369 [TBL] [Abstract][Full Text] [Related]
7. Enhancing the utility of unnatural amino acid synthetases by manipulating broad substrate specificity. Stokes AL; Miyake-Stoner SJ; Peeler JC; Nguyen DP; Hammer RP; Mehl RA Mol Biosyst; 2009 Sep; 5(9):1032-8. PubMed ID: 19668869 [TBL] [Abstract][Full Text] [Related]
8. Making proteins with unnatural amino acids: the first engineered aminoacyl-tRNA synthetase revisited. Kast P Chembiochem; 2011 Nov; 12(16):2395-8. PubMed ID: 21953917 [No Abstract] [Full Text] [Related]
9. Crystal structure of glutamyl-queuosine tRNAAsp synthetase complexed with L-glutamate: structural elements mediating tRNA-independent activation of glutamate and glutamylation of tRNAAsp anticodon. Blaise M; Olieric V; Sauter C; Lorber B; Roy B; Karmakar S; Banerjee R; Becker HD; Kern D J Mol Biol; 2008 Sep; 381(5):1224-37. PubMed ID: 18602926 [TBL] [Abstract][Full Text] [Related]
10. Basic faced alpha-helices are widespread in the peptide extensions of the eukaryotic aminoacyl-tRNA synthetases. Massey SE In Silico Biol; 2006; 6(4):259-73. PubMed ID: 16922690 [TBL] [Abstract][Full Text] [Related]
11. One plasmid selection system for the rapid evolution of aminoacyl-tRNA synthetases. Melançon CE; Schultz PG Bioorg Med Chem Lett; 2009 Jul; 19(14):3845-7. PubMed ID: 19398201 [TBL] [Abstract][Full Text] [Related]
12. A minimal TrpRS catalytic domain supports sense/antisense ancestry of class I and II aminoacyl-tRNA synthetases. Pham Y; Li L; Kim A; Erdogan O; Weinreb V; Butterfoss GL; Kuhlman B; Carter CW Mol Cell; 2007 Mar; 25(6):851-62. PubMed ID: 17386262 [TBL] [Abstract][Full Text] [Related]
13. The incorporation of a photoisomerizable amino acid into proteins in E. coli. Bose M; Groff D; Xie J; Brustad E; Schultz PG J Am Chem Soc; 2006 Jan; 128(2):388-9. PubMed ID: 16402807 [TBL] [Abstract][Full Text] [Related]
14. Ancient tRNA synthetase meets modern structural biology. Schimmel P; Guo M Structure; 2009 Mar; 17(3):315-7. PubMed ID: 19278642 [TBL] [Abstract][Full Text] [Related]
15. A chimaeric glutamyl:glutaminyl-tRNA synthetase: implications for evolution. Saha R; Dasgupta S; Basu G; Roy S Biochem J; 2009 Jan; 417(2):449-55. PubMed ID: 18817520 [TBL] [Abstract][Full Text] [Related]
16. Benzophenone photophore flexibility and proximity: molecular and crystal-state structure of a Bpa-containing trichogin dodecapeptide analogue. Saviano M; Improta R; Benedetti E; Carrozzini B; Cascarano GL; Didierjean C; Toniolo C; Crisma M Chembiochem; 2004 Apr; 5(4):541-4. PubMed ID: 15185380 [No Abstract] [Full Text] [Related]
17. Crystallographic studies on multiple conformational states of active-site loops in pyrrolysyl-tRNA synthetase. Yanagisawa T; Ishii R; Fukunaga R; Kobayashi T; Sakamoto K; Yokoyama S J Mol Biol; 2008 May; 378(3):634-52. PubMed ID: 18387634 [TBL] [Abstract][Full Text] [Related]
18. Improving orthogonal tRNA-synthetase recognition for efficient unnatural amino acid incorporation and application in mammalian cells. Takimoto JK; Adams KL; Xiang Z; Wang L Mol Biosyst; 2009 Sep; 5(9):931-4. PubMed ID: 19668857 [TBL] [Abstract][Full Text] [Related]
19. Small molecules: big players in the evolution of protein synthesis. Ataide SF; Ibba M ACS Chem Biol; 2006 Jun; 1(5):285-97. PubMed ID: 17163757 [TBL] [Abstract][Full Text] [Related]
20. A new strategy for the site-specific modification of proteins in vivo. Zhang Z; Smith BA; Wang L; Brock A; Cho C; Schultz PG Biochemistry; 2003 Jun; 42(22):6735-46. PubMed ID: 12779328 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]