These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 17628477)

  • 21. Cognition, mechanism, and evolutionary relationships in aminoacyl-tRNA synthetases.
    Carter CW
    Annu Rev Biochem; 1993; 62():715-48. PubMed ID: 8352600
    [No Abstract]   [Full Text] [Related]  

  • 22. Aminoacyl adenylate substrate analogues for the inhibition of adenylation domains of nonribosomal peptide synthetases.
    Finking R; Neumüller A; Solsbacher J; Konz D; Kretzschmar G; Schweitzer M; Krumm T; Marahiel MA
    Chembiochem; 2003 Sep; 4(9):903-6. PubMed ID: 12964169
    [No Abstract]   [Full Text] [Related]  

  • 23. Structural Basis for the Specific Cotranslational Incorporation of p-Boronophenylalanine into Biosynthetic Proteins.
    Schiefner A; Nästle L; Landgraf M; Reichert AJ; Skerra A
    Biochemistry; 2018 May; 57(18):2597-2600. PubMed ID: 29668275
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Directed evolution of the substrate specificities of a site-specific recombinase and an aminoacyl-tRNA synthetase using fluorescence-activated cell sorting (FACS).
    Santoro SW; Schultz PG
    Methods Mol Biol; 2003; 230():291-312. PubMed ID: 12824591
    [No Abstract]   [Full Text] [Related]  

  • 25. Recognition of non-alpha-amino substrates by pyrrolysyl-tRNA synthetase.
    Kobayashi T; Yanagisawa T; Sakamoto K; Yokoyama S
    J Mol Biol; 2009 Feb; 385(5):1352-60. PubMed ID: 19100747
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Crystallographic study of a site-specifically cross-linked protein complex with a genetically incorporated photoreactive amino acid.
    Sato S; Mimasu S; Sato A; Hino N; Sakamoto K; Umehara T; Yokoyama S
    Biochemistry; 2011 Jan; 50(2):250-7. PubMed ID: 21128684
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effect of a domain-spanning disulfide on aminoacyl-tRNA synthetase activity.
    Banerjee P; Warf MB; Alexander R
    Biochemistry; 2009 Oct; 48(42):10113-9. PubMed ID: 19772352
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A genetically encoded fluorescent amino acid.
    Wang J; Xie J; Schultz PG
    J Am Chem Soc; 2006 Jul; 128(27):8738-9. PubMed ID: 16819861
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The tRNA-induced conformational activation of human mitochondrial phenylalanyl-tRNA synthetase.
    Klipcan L; Levin I; Kessler N; Moor N; Finarov I; Safro M
    Structure; 2008 Jul; 16(7):1095-104. PubMed ID: 18611382
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Not just because it is there: aminoacyl-tRNA synthetases gain control of the cell.
    Ribas de Pouplana L; Geslain R
    Mol Cell; 2008 Apr; 30(1):3-4. PubMed ID: 18406320
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Photo-cross-linking interacting proteins with a genetically encoded benzophenone.
    Farrell IS; Toroney R; Hazen JL; Mehl RA; Chin JW
    Nat Methods; 2005 May; 2(5):377-84. PubMed ID: 16170867
    [No Abstract]   [Full Text] [Related]  

  • 32. Eleven down and nine to go.
    Cusack S
    Nat Struct Biol; 1995 Oct; 2(10):824-31. PubMed ID: 7552701
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [Codases: fifty years after].
    Safro MG; Moor NA
    Mol Biol (Mosk); 2009; 43(2):230-42. PubMed ID: 19425492
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Site-specific incorporation of non-natural amino acids into proteins in mammalian cells with an expanded genetic code.
    Hino N; Hayashi A; Sakamoto K; Yokoyama S
    Nat Protoc; 2006; 1(6):2957-62. PubMed ID: 17406555
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Electron-deficient p-benzoyl-l-phenylalanine derivatives increase covalent chemical capture yields for protein-protein interactions.
    Joiner CM; Breen ME; Mapp AK
    Protein Sci; 2019 Jun; 28(6):1163-1170. PubMed ID: 30977234
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Structural basis of the initial binding of tRNA(Ile) lysidine synthetase TilS with ATP and L-lysine.
    Kuratani M; Yoshikawa Y; Bessho Y; Higashijima K; Ishii T; Shibata R; Takahashi S; Yutani K; Yokoyama S
    Structure; 2007 Dec; 15(12):1642-53. PubMed ID: 18073113
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [Structure and function of aminoacyl-tRNA synthetases].
    Siatecka M; Barciszewski J
    Postepy Biochem; 1995; 41(4):266-75. PubMed ID: 8851144
    [No Abstract]   [Full Text] [Related]  

  • 38. Increased gene translation stringency in mammalian cells by nonsense suppression at multiple permissive sites with a single noncanonical amino acid.
    Kadunc L; Svetličič M; Forstnerič V; Hafner Bratkovič I; Jerala R
    FEBS Lett; 2020 Aug; 594(15):2452-2461. PubMed ID: 32401336
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Enzymatic tRNA acylation by acid and alpha-hydroxy acid analogues of amino acids.
    Owczarek A; Safro M; Wolfson AD
    Biochemistry; 2008 Jan; 47(1):301-7. PubMed ID: 18067322
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Engineering bromodomains with a photoactive amino acid by engaging 'Privileged' tRNA synthetases.
    Wagner S; Sudhamalla B; Mannes P; Sappa S; Kavoosi S; Dey D; Wang S; Islam K
    Chem Commun (Camb); 2020 Mar; 56(25):3641-3644. PubMed ID: 32107512
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.