These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 17629400)

  • 41. Small hazardous waste generators in developing countries: use of stabilization/solidification process as an economic tool for metal wastewater treatment and appropriate sludge disposal.
    Silva MA; Mater L; Souza-Sierra MM; Corrêa AX; Sperb R; Radetski CM
    J Hazard Mater; 2007 Aug; 147(3):986-90. PubMed ID: 17331640
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Pb stabilization in fresh fly ash from municipal solid waste incinerator using accelerated carbonation technology.
    Jianguo J; Maozhe C; Yan Z; Xin X
    J Hazard Mater; 2009 Jan; 161(2-3):1046-51. PubMed ID: 18502039
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Waste with chrome in the Portland cement clinker production.
    Trezza MA; Scian AN
    J Hazard Mater; 2007 Aug; 147(1-2):188-96. PubMed ID: 17292542
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Cement-clay pastes for stabilization/solidification of 2-chloroaniline.
    Botta D; Dotelli G; Biancardi R; Pelosato R; Natali Sora I
    Waste Manag; 2004; 24(2):207-16. PubMed ID: 14761760
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Comparison of limestone calcined clay cement and ordinary Portland cement for stabilization/solidification of Pb-Zn smelter residue.
    Reddy VA; Solanki CH; Kumar S; Reddy KR; Du YJ
    Environ Sci Pollut Res Int; 2022 Feb; 29(8):11393-11404. PubMed ID: 34537940
    [TBL] [Abstract][Full Text] [Related]  

  • 46. An X-ray diffraction (XRD) and Fourier transform infrared spectroscopic (FT-IR) investigation of the long-term effect on the solidification/stabilization (S/S) of arsenic(V) in Portland cement type-V.
    Mollah MY; Kesmez M; Cocke DL
    Sci Total Environ; 2004 Jun; 325(1-3):255-62. PubMed ID: 15144793
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Transversal immission patterns and leachability of heavy metals in road side soils.
    Hjortenkrans DS; Bergbäck BG; Häggerud AV
    J Environ Monit; 2008 Jun; 10(6):739-46. PubMed ID: 18528541
    [TBL] [Abstract][Full Text] [Related]  

  • 48. An alternative to Portland Cement for waste encapsulation--the calcium sulfoaluminate cement system.
    Zhou Q; Milestone NB; Hayes M
    J Hazard Mater; 2006 Aug; 136(1):120-9. PubMed ID: 16406289
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Stabilization/solidification on chromium (III) wastes by C(3)A and C(3)A hydrated matrix.
    Li X; He C; Bai Y; Ma B; Wang G; Tan H
    J Hazard Mater; 2014 Mar; 268():61-7. PubMed ID: 24468527
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Solidification/stabilisation of air pollution control residues using Portland cement: Physical properties and chloride leaching.
    Lampris C; Stegemann JA; Cheeseman CR
    Waste Manag; 2009 Mar; 29(3):1067-75. PubMed ID: 18849156
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Assessing long-term performance of stabilized Zn-contaminated dredged sediment slurry treated with the PHDVPSS method.
    Mastoi AK; Bhanbhro R; Chen X; Fatah TA; Mehroz A
    Environ Sci Pollut Res Int; 2022 Mar; 29(13):19262-19272. PubMed ID: 34714480
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Influence of lead on stabilization/solidification by ordinary Portland cement and magnesium phosphate cement.
    Wang YS; Dai JG; Wang L; Tsang DCW; Poon CS
    Chemosphere; 2018 Jan; 190():90-96. PubMed ID: 28985540
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Stabilisation/solidification of synthetic petroleum drill cuttings.
    Al-Ansary MS; Al-Tabbaa A
    J Hazard Mater; 2007 Mar; 141(2):410-21. PubMed ID: 16846687
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Validation of an in situ solidification/stabilization technique for hazardous barium and cyanide waste for safe disposal into a secured landfill.
    Vaidya R; Kodam K; Ghole V; Surya Mohan Rao K
    J Environ Manage; 2010 Sep; 91(9):1821-30. PubMed ID: 20430516
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Utilization of flotation wastes of copper slag as raw material in cement production.
    Alp I; Deveci H; Süngün H
    J Hazard Mater; 2008 Nov; 159(2-3):390-5. PubMed ID: 18384950
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Use of waste gypsum to replace natural gypsum as set retarders in portland cement.
    Chandara C; Azizli KA; Ahmad ZA; Sakai E
    Waste Manag; 2009 May; 29(5):1675-9. PubMed ID: 19131236
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Modeling leaching behavior of solidified wastes using back-propagation neural networks.
    Bayar S; Demir I; Engin GO
    Ecotoxicol Environ Saf; 2009 Mar; 72(3):843-50. PubMed ID: 18068228
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Assessment of Pb-slag, MSWI bottom ash and boiler and fly ash for using as a fine aggregate in cement mortar.
    Saikia N; Cornelis G; Mertens G; Elsen J; Van Balen K; Van Gerven T; Vandecasteele C
    J Hazard Mater; 2008 Jun; 154(1-3):766-77. PubMed ID: 18068299
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Investigation into the artificial ageing effects on the microstructure of an industrial solid waste treated with cement.
    Choura M; Keskes M; Tayibi H; Rouis J
    Environ Technol; 2011 Apr; 32(5-6):625-32. PubMed ID: 21877543
    [TBL] [Abstract][Full Text] [Related]  

  • 60. New ternary blend limestone calcined clay cement for solidification/stabilization of zinc contaminated soil.
    Reddy VA; Solanki CH; Kumar S; Reddy KR; Du YJ
    Chemosphere; 2019 Nov; 235():308-315. PubMed ID: 31260871
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.