These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
235 related articles for article (PubMed ID: 17629479)
1. Influence of moisture content and cultivation duration on Clostridium thermocellum 27405 end-product formation in solid substrate cultivation on Avicel. Chinn MS; Nokes SE; Strobel HJ Bioresour Technol; 2008 May; 99(7):2664-71. PubMed ID: 17629479 [TBL] [Abstract][Full Text] [Related]
2. Influence of process conditions on end product formation from Clostridium thermocellum 27405 in solid substrate cultivation on paper pulp sludge. Chinn MS; Nokes SE; Strobel HJ Bioresour Technol; 2007 Aug; 98(11):2184-93. PubMed ID: 17107786 [TBL] [Abstract][Full Text] [Related]
3. Investigation of the metabolic inhibition observed in solid-substrate cultivation of Clostridium thermocellum on cellulose. Dharmagadda VS; Nokes SE; Strobel HJ; Flythe MD Bioresour Technol; 2010 Aug; 101(15):6039-44. PubMed ID: 20362436 [TBL] [Abstract][Full Text] [Related]
4. Screening of thermophilic anaerobic bacteria for solid substrate cultivation on lignocellulosic substrates. Chinn MS; Nokes SE; Strobel HJ Biotechnol Prog; 2006; 22(1):53-9. PubMed ID: 16454492 [TBL] [Abstract][Full Text] [Related]
5. Influence of initial cellulose concentration on the carbon flow distribution during batch fermentation by Clostridium thermocellum ATCC 27405. Islam R; Cicek N; Sparling R; Levin D Appl Microbiol Biotechnol; 2009 Feb; 82(1):141-8. PubMed ID: 18998122 [TBL] [Abstract][Full Text] [Related]
6. Hydrolysis of dilute acid pretreated mixed hardwood and purified microcrystalline cellulose by cell-free broth from Clostridium thermocellum. Lynd LR; Grethlein HE Biotechnol Bioeng; 1987 Jan; 29(1):92-100. PubMed ID: 18561134 [TBL] [Abstract][Full Text] [Related]
7. Testing alternative kinetic models for utilization of crystalline cellulose (Avicel) by batch cultures of Clostridium thermocellum. Holwerda EK; Lynd LR Biotechnol Bioeng; 2013 Sep; 110(9):2389-94. PubMed ID: 23568291 [TBL] [Abstract][Full Text] [Related]
8. Closing the carbon balance for fermentation by Clostridium thermocellum (ATCC 27405). Ellis LD; Holwerda EK; Hogsett D; Rogers S; Shao X; Tschaplinski T; Thorne P; Lynd LR Bioresour Technol; 2012 Jan; 103(1):293-9. PubMed ID: 22055095 [TBL] [Abstract][Full Text] [Related]
9. Metabolic control of Clostridium thermocellum via inhibition of hydrogenase activity and the glucose transport rate. Li HF; Knutson BL; Nokes SE; Lynn BC; Flythe MD Appl Microbiol Biotechnol; 2012 Feb; 93(4):1777-84. PubMed ID: 22218768 [TBL] [Abstract][Full Text] [Related]
10. Microbial pretreatment of cotton stalks by solid state cultivation of Phanerochaete chrysosporium. Shi J; Chinn MS; Sharma-Shivappa RR Bioresour Technol; 2008 Sep; 99(14):6556-64. PubMed ID: 18242083 [TBL] [Abstract][Full Text] [Related]
11. Conversion for Avicel and AFEX pretreated corn stover by Clostridium thermocellum and simultaneous saccharification and fermentation: insights into microbial conversion of pretreated cellulosic biomass. Shao X; Jin M; Guseva A; Liu C; Balan V; Hogsett D; Dale BE; Lynd L Bioresour Technol; 2011 Sep; 102(17):8040-5. PubMed ID: 21683579 [TBL] [Abstract][Full Text] [Related]
12. Elimination of metabolic pathways to all traditional fermentation products increases ethanol yields in Clostridium thermocellum. Papanek B; Biswas R; Rydzak T; Guss AM Metab Eng; 2015 Nov; 32():49-54. PubMed ID: 26369438 [TBL] [Abstract][Full Text] [Related]
13. Isolation and characterization of a new cellulosome-producing Clostridium thermocellum strain. Tachaapaikoon C; Kosugi A; Pason P; Waeonukul R; Ratanakhanokchai K; Kyu KL; Arai T; Murata Y; Mori Y Biodegradation; 2012 Feb; 23(1):57-68. PubMed ID: 21637976 [TBL] [Abstract][Full Text] [Related]
14. Enhancing the cellulose-degrading activity of cellulolytic bacteria CTL-6 (Clostridium thermocellum) by co-culture with non-cellulolytic bacteria W2-10 (Geobacillus sp.). Lü Y; Li N; Yuan X; Hua B; Wang J; Ishii M; Igarashi Y; Cui Z Appl Biochem Biotechnol; 2013 Dec; 171(7):1578-88. PubMed ID: 23975281 [TBL] [Abstract][Full Text] [Related]
15. A major new component in the cellulosome of Clostridium thermocellum is a processive endo-beta-1,4-glucanase producing cellotetraose. Zverlov VV; Schantz N; Schwarz WH FEMS Microbiol Lett; 2005 Aug; 249(2):353-8. PubMed ID: 16006068 [TBL] [Abstract][Full Text] [Related]
16. Optimization of affinity digestion for the isolation of cellulosomes from Clostridium thermocellum. St Brice LA; Shao X; Izquierdo JA; Lynd LR Prep Biochem Biotechnol; 2014; 44(2):206-16. PubMed ID: 24152105 [TBL] [Abstract][Full Text] [Related]
17. Growth phase-dependant enzyme profile of pyruvate catabolism and end-product formation in Clostridium thermocellum ATCC 27405. Rydzak T; Levin DB; Cicek N; Sparling R J Biotechnol; 2009 Mar; 140(3-4):169-75. PubMed ID: 19428711 [TBL] [Abstract][Full Text] [Related]
18. Expression of 17 genes in Clostridium thermocellum ATCC 27405 during fermentation of cellulose or cellobiose in continuous culture. Stevenson DM; Weimer PJ Appl Environ Microbiol; 2005 Aug; 71(8):4672-8. PubMed ID: 16085862 [TBL] [Abstract][Full Text] [Related]
19. Enhanced cellulosic ethanol production via consolidated bioprocessing by Clostridium thermocellum ATCC 31924☆. Singh N; Mathur AS; Gupta RP; Barrow CJ; Tuli D; Puri M Bioresour Technol; 2018 Feb; 250():860-867. PubMed ID: 30001594 [TBL] [Abstract][Full Text] [Related]
20. Continuous hydrogen production during fermentation of alpha-cellulose by the thermophillic bacterium Clostridium thermocellum. Magnusson L; Cicek N; Sparling R; Levin D Biotechnol Bioeng; 2009 Feb; 102(3):759-66. PubMed ID: 18828175 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]