BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 17629609)

  • 41. The Use of Acoustic Radiation Force Decorrelation-Weighted Pulse Inversion for Enhanced Ultrasound Contrast Imaging.
    Herbst EB; Unnikrishnan S; Wang S; Klibanov AL; Hossack JA; Mauldin FW
    Invest Radiol; 2017 Feb; 52(2):95-102. PubMed ID: 27495188
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Ultrasonic contrast agent shell rupture detected by inertial cavitation and rebound signals.
    Ammi AY; Cleveland RO; Mamou J; Wang GI; Bridal SL; O'Brien WD
    IEEE Trans Ultrason Ferroelectr Freq Control; 2006 Jan; 53(1):126-36. PubMed ID: 16471439
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Application of nonlinear sliding mode control to ultrasound contrast agent microbubbles.
    Carroll JM; Lauderbaugh LK; Calvisi ML
    J Acoust Soc Am; 2013 Jul; 134(1):216-22. PubMed ID: 23862799
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A non-linear ultrasonic scattering approach for micro bubble concentration quantification.
    Mari JM; Hibbs K; Tang M
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():2183-6. PubMed ID: 18002422
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Modeling of nonlinear viscous stress in encapsulating shells of lipid-coated contrast agent microbubbles.
    Doinikov AA; Haac JF; Dayton PA
    Ultrasonics; 2009 Feb; 49(2):269-75. PubMed ID: 18990417
    [TBL] [Abstract][Full Text] [Related]  

  • 46. High-frequency, nonlinear flow imaging of microbubble contrast agents.
    Goertz DE; Needles A; Burns PN; Foster FS
    IEEE Trans Ultrason Ferroelectr Freq Control; 2005 Mar; 52(3):495-502. PubMed ID: 15857059
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Quantitative ultrasound method to detect and monitor laser-induced cavitation bubbles.
    Karpiouk AB; Aglyamov SR; Bourgeois F; Ben-Yakar A; Emelianov SY
    J Biomed Opt; 2008; 13(3):034011. PubMed ID: 18601556
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Investigating the significance of multiple scattering in ultrasound contrast agent particle populations.
    Stride E; Saffari N
    IEEE Trans Ultrason Ferroelectr Freq Control; 2005 Dec; 52(12):2332-45. PubMed ID: 16463501
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Adaptive Multifocus Beamforming for Contrast-Enhanced-Super-Resolution Ultrasound Imaging in Deep Tissue.
    Espindola D; Lin F; Soulioti DE; Dayton PA; Pinton GF
    IEEE Trans Ultrason Ferroelectr Freq Control; 2018 Dec; 65(12):2255-2263. PubMed ID: 30136938
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Contrast-specific ultrasound techniques.
    Quaia E
    Radiol Med; 2007 Jun; 112(4):473-90. PubMed ID: 17563852
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Nonlinear Imaging of Microbubble Contrast Agent Using the Volterra Filter: In Vivo Results.
    Du J; Liu D; Ebbini ES
    IEEE Trans Ultrason Ferroelectr Freq Control; 2016 Dec; 63(12):2069-2081. PubMed ID: 27705855
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Optical observations of acoustical radiation force effects on individual air bubbles.
    Palanchon P; Tortoli P; Bouakaz A; Versluis M; de Jong N
    IEEE Trans Ultrason Ferroelectr Freq Control; 2005 Jan; 52(1):104-10. PubMed ID: 15742566
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Backscattered ultrasound from contrast microbubbles: effects of tissue and bubble interaction.
    Ressner M; Kvikliene A; Hoff L; Jurkonis R; Jansson T; Janerot-Sjoberg B; Lukosevicius A; Ask P
    Conf Proc IEEE Eng Med Biol Soc; 2004; 2004():849-52. PubMed ID: 17271810
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Potential of microbubbles for use as point targets in phase aberration correction.
    Psychoudakis D; Fowlkes JB; Volakis JL; Carson PL
    IEEE Trans Ultrason Ferroelectr Freq Control; 2004 Dec; 51(12):1639-48. PubMed ID: 15690724
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Quantitative measurement of ultrasound disruption of polymer-shelled microbubbles.
    Bevan PD; Karshafian R; Tickner EG; Burns PN
    Ultrasound Med Biol; 2007 Nov; 33(11):1777-86. PubMed ID: 17656011
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A preliminary in vitro assessment of polymer-shelled microbubbles in contrast-enhanced ultrasound imaging.
    Sciallero C; Paradossi G; Trucco A
    Ultrasonics; 2012 Mar; 52(3):456-64. PubMed ID: 22133737
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Observing Bubble Cavitation by Back-Propagation of Acoustic Emission Signals.
    Koda R; Origasa T; Nakajima T; Yamakoshi Y
    IEEE Trans Ultrason Ferroelectr Freq Control; 2019 May; 66(5):823-833. PubMed ID: 30735990
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Surfactant shedding and gas diffusion during pulsed ultrasound through a microbubble contrast agent suspension.
    O'Brien JP; Stride E; Ovenden N
    J Acoust Soc Am; 2013 Aug; 134(2):1416-27. PubMed ID: 23927137
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Predicting backscatter characteristics from micron- and submicron-scale ultrasound contrast agents using a size-integration technique.
    Zheng H; Barker A; Shandas R
    IEEE Trans Ultrason Ferroelectr Freq Control; 2006 Mar; 53(3):639-44. PubMed ID: 16555773
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Counter-propagating wave interaction for contrast-enhanced ultrasound imaging.
    Renaud G; Bosch JG; Ten Kate GL; Shamdasani V; Entrekin R; de Jong N; van der Steen AF
    Phys Med Biol; 2012 Nov; 57(21):L9-18. PubMed ID: 23047302
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.