These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 17629609)

  • 81. A comparative analysis of multi-pulse techniques in contrast-enhanced ultrasound medical imaging.
    Crocco M; Palmese M; Sciallero C; Trucco A
    Ultrasonics; 2009 Jan; 49(1):120-5. PubMed ID: 18703210
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Nonlinear dynamic behavior of microscopic bubbles near a rigid wall.
    Suslov SA; Ooi A; Manasseh R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jun; 85(6 Pt 2):066309. PubMed ID: 23005208
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Mechanisms of contrast agent destruction.
    Chomas JE; Dayton P; Allen J; Morgan K; Ferrara KW
    IEEE Trans Ultrason Ferroelectr Freq Control; 2001 Jan; 48(1):232-48. PubMed ID: 11367791
    [TBL] [Abstract][Full Text] [Related]  

  • 84. A Newtonian rheological model for the interface of microbubble contrast agents.
    Chatterjee D; Sarkar K
    Ultrasound Med Biol; 2003 Dec; 29(12):1749-57. PubMed ID: 14698342
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Simultaneous Evalulation of Contrast Pulse Sequences for Super-Resolution Ultrasound Imaging - Preliminary In Vitro and In Vivo Results.
    Brown K; Hoyt K
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():2121-2124. PubMed ID: 33018425
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Interaction of an ultrasound-activated contrast microbubble with a wall at arbitrary separation distances.
    Doinikov AA; Bouakaz A
    Phys Med Biol; 2015 Oct; 60(20):7909-25. PubMed ID: 26407104
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Experimental investigations of nonlinearities and destruction mechanisms of an experimental phospholipid-based ultrasound contrast agent.
    Casciaro S; Palmizio Errico R; Conversano F; Demitri C; Distante A
    Invest Radiol; 2007 Feb; 42(2):95-104. PubMed ID: 17220727
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Radial modulation imaging of microbubble contrast agents at high frequency.
    Chérin E; Brown J; Måsøy SE; Shariff H; Karshafian R; Williams R; Burns PN; Foster FS
    Ultrasound Med Biol; 2008 Jun; 34(6):949-62. PubMed ID: 18294758
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Monodisperse Versus Polydisperse Ultrasound Contrast Agents: Non-Linear Response, Sensitivity, and Deep Tissue Imaging Potential.
    Segers T; Kruizinga P; Kok MP; Lajoinie G; de Jong N; Versluis M
    Ultrasound Med Biol; 2018 Jul; 44(7):1482-1492. PubMed ID: 29705522
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Third order harmonic imaging for biological tissues using three phase-coded pulses.
    Ma Q; Gong X; Zhang D
    Ultrasonics; 2006 Dec; 44 Suppl 1():e61-5. PubMed ID: 16844158
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Optimizing Sensitivity of Ultrasound Contrast-Enhanced Super-Resolution Imaging by Tailoring Size Distribution of Microbubble Contrast Agent.
    Lin F; Tsuruta JK; Rojas JD; Dayton PA
    Ultrasound Med Biol; 2017 Oct; 43(10):2488-2493. PubMed ID: 28668636
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Increasing specificity of contrast-enhanced ultrasound imaging using the interaction of quasi counter-propagating wavefronts: a proof of concept.
    Renaud G; Bosch JG; van der Steen AF; de Jong N
    IEEE Trans Ultrason Ferroelectr Freq Control; 2015 Oct; 62(10):1768-78. PubMed ID: 26470039
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Dual frequency method for simultaneous translation and real-time imaging of ultrasound contrast agents within large blood vessels.
    Patil AV; Rychak JJ; Allen JS; Klibanov AL; Hossack JA
    Ultrasound Med Biol; 2009 Dec; 35(12):2021-30. PubMed ID: 19828229
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Assessment of tissue perfusion by contrast-enhanced ultrasound.
    Quaia E
    Eur Radiol; 2011 Mar; 21(3):604-15. PubMed ID: 20927527
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Investigation of the effects of microbubble shell disruption on population scattering and implications for modeling contrast agent behavior.
    Chien CT; Burns PN
    IEEE Trans Ultrason Ferroelectr Freq Control; 2004 Mar; 51(3):286-92. PubMed ID: 15128215
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Use of modulated excitation signals in medical ultrasound. Part I: Basic concepts and expected benefits.
    Misaridis T; Jensen JA
    IEEE Trans Ultrason Ferroelectr Freq Control; 2005 Feb; 52(2):177-91. PubMed ID: 15801307
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Acoustic characterization and contrast imaging of microbubbles encapsulated by polymeric shells coated or filled with magnetic nanoparticles.
    Sciallero C; Grishenkov D; Kothapalli SV; Oddo L; Trucco A
    J Acoust Soc Am; 2013 Nov; 134(5):3918-30. PubMed ID: 24180801
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Using light scattering to measure the response of individual ultrasound contrast microbubbles subjected to pulsed ultrasound in vitro.
    Guan J; Matula TJ
    J Acoust Soc Am; 2004 Nov; 116(5):2832-42. PubMed ID: 15603131
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Harmonic vibro-acoustography.
    Chen S; Kinnick RR; Greenleaf JF; Fatemi M
    IEEE Trans Ultrason Ferroelectr Freq Control; 2007 Jul; 54(7):1346-51. PubMed ID: 17718323
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Investigation of the Phase of Nonlinear Echoes From Microbubbles During Amplitude Modulation.
    Keller SB; Lai TY; De Koninck L; Averkiou MA
    IEEE Trans Ultrason Ferroelectr Freq Control; 2022 Mar; 69(3):1032-1040. PubMed ID: 35073259
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.