BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

281 related articles for article (PubMed ID: 17629683)

  • 1. Development and neuromodulation of spinal locomotor networks in the metamorphosing frog.
    Rauscent A; Le Ray D; Cabirol-Pol MJ; Sillar KT; Simmers J; Combes D
    J Physiol Paris; 2006; 100(5-6):317-27. PubMed ID: 17629683
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Developmental segregation of spinal networks driving axial- and hindlimb-based locomotion in metamorphosing Xenopus laevis.
    Combes D; Merrywest SD; Simmers J; Sillar KT
    J Physiol; 2004 Aug; 559(Pt 1):17-24. PubMed ID: 15235079
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Neuromodulation and developmental plasticity in the locomotor system of anuran amphibians during metamorphosis.
    Sillar KT; Combes D; Ramanathan S; Molinari M; Simmers J
    Brain Res Rev; 2008 Jan; 57(1):94-102. PubMed ID: 17900702
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metamorphosis-induced changes in the coupling of spinal thoraco-lumbar motor outputs during swimming in Xenopus laevis.
    Beyeler A; Métais C; Combes D; Simmers J; Le Ray D
    J Neurophysiol; 2008 Sep; 100(3):1372-83. PubMed ID: 18596184
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Developmental and regional expression of NADPH-diaphorase/nitric oxide synthase in spinal cord neurons correlates with the emergence of limb motor networks in metamorphosing Xenopus laevis.
    Ramanathan S; Combes D; Molinari M; Simmers J; Sillar KT
    Eur J Neurosci; 2006 Oct; 24(7):1907-22. PubMed ID: 17067294
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Opposing aminergic modulation of distinct spinal locomotor circuits and their functional coupling during amphibian metamorphosis.
    Rauscent A; Einum J; Le Ray D; Simmers J; Combes D
    J Neurosci; 2009 Jan; 29(4):1163-74. PubMed ID: 19176825
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Adaptive plasticity of spino-extraocular motor coupling during locomotion in metamorphosing Xenopus laevis.
    von Uckermann G; Lambert FM; Combes D; Straka H; Simmers J
    J Exp Biol; 2016 Apr; 219(Pt 8):1110-21. PubMed ID: 27103674
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A switch in aminergic modulation of locomotor CPG output during amphibian metamorphosis.
    Combes D; Sillar KT; Simmers J
    Front Biosci (Schol Ed); 2012 Jun; 4(4):1364-74. PubMed ID: 22652878
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Xenopus laevis: an ideal experimental model for studying the developmental dynamics of neural network assembly and sensory-motor computations.
    Straka H; Simmers J
    Dev Neurobiol; 2012 Apr; 72(4):649-63. PubMed ID: 21834082
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spinal efference copy signaling and gaze stabilization during locomotion in juvenile Xenopus frogs.
    von Uckermann G; Le Ray D; Combes D; Straka H; Simmers J
    J Neurosci; 2013 Mar; 33(10):4253-64. PubMed ID: 23467343
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Locomotor pattern in the adult zebrafish spinal cord in vitro.
    Gabriel JP; Mahmood R; Walter AM; Kyriakatos A; Hauptmann G; Calabrese RL; El Manira A
    J Neurophysiol; 2008 Jan; 99(1):37-48. PubMed ID: 17977928
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Vestibular lesion-induced developmental plasticity in spinal locomotor networks during Xenopus laevis metamorphosis.
    Beyeler A; Rao G; Ladepeche L; Jacques A; Simmers J; Le Ray D
    PLoS One; 2013; 8(8):e71013. PubMed ID: 23951071
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Coordinated network functioning in the spinal cord: an evolutionary perspective.
    Falgairolle M; de Seze M; Juvin L; Morin D; Cazalets JR
    J Physiol Paris; 2006; 100(5-6):304-16. PubMed ID: 17658245
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metamorphosis alters the response to spinal cord transection in Xenopus laevis frogs.
    Beattie MS; Bresnahan JC; Lopate G
    J Neurobiol; 1990 Oct; 21(7):1108-22. PubMed ID: 2258724
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Disruption of left-right reciprocal coupling in the spinal cord of larval lamprey abolishes brain-initiated locomotor activity.
    Jackson AW; Horinek DF; Boyd MR; McClellan AD
    J Neurophysiol; 2005 Sep; 94(3):2031-44. PubMed ID: 16000521
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nitric oxide synthase expression and cell changes in dorsal root ganglia and spinal dorsal horn of developing and adult Rana esculenta indicate a role of nitric oxide in limb metamorphosis.
    Cristino L; Florenzano F; Bentivoglio M; Guglielmotti V
    J Comp Neurol; 2004 May; 472(4):423-36. PubMed ID: 15065117
    [TBL] [Abstract][Full Text] [Related]  

  • 17. From tadpole to adult frog locomotion.
    Sillar KT; Simmers J; Combes D
    Curr Opin Neurobiol; 2023 Oct; 82():102753. PubMed ID: 37549591
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Intercostal and abdominal respiratory motoneurons in the neonatal rat spinal cord: spatiotemporal organization and responses to limb afferent stimulation.
    Giraudin A; Cabirol-Pol MJ; Simmers J; Morin D
    J Neurophysiol; 2008 May; 99(5):2626-40. PubMed ID: 18337363
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Peptidergic neuromodulation of the lumbar locomotor network in the neonatal rat spinal cord.
    Barrière G; Bertrand S; Cazalets JR
    Peptides; 2005 Feb; 26(2):277-86. PubMed ID: 15629539
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multiple monoaminergic modulation of posturo-locomotor network activity in the newborn rat spinal cord.
    Beliez L; Barrière G; Bertrand SS; Cazalets JR
    Front Neural Circuits; 2014; 8():99. PubMed ID: 25177275
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.