These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

281 related articles for article (PubMed ID: 17629683)

  • 21. Developmental changes in spinal neuronal properties, motor network configuration, and neuromodulation at free-swimming stages of Xenopus tadpoles.
    Currie SP; Sillar KT
    J Neurophysiol; 2018 Mar; 119(3):786-795. PubMed ID: 29142093
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Monoaminergic control of cauda-equina-evoked locomotion in the neonatal mouse spinal cord.
    Gordon IT; Whelan PJ
    J Neurophysiol; 2006 Dec; 96(6):3122-9. PubMed ID: 16956991
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Molecular mechanism and evolutional significance of epithelial-mesenchymal interactions in the body- and tail-dependent metamorphic transformation of anuran larval skin.
    Yoshizato K
    Int Rev Cytol; 2007; 260():213-60. PubMed ID: 17482907
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Role of locomotor efference copy in vertebrate gaze stabilization.
    Straka H; Lambert FM; Simmers J
    Front Neural Circuits; 2022; 16():1040070. PubMed ID: 36569798
    [TBL] [Abstract][Full Text] [Related]  

  • 25. From swimming to walking: a single basic network for two different behaviors.
    Bem T; Cabelguen JM; Ekeberg O; Grillner S
    Biol Cybern; 2003 Feb; 88(2):79-90. PubMed ID: 12567223
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Hypergravity susceptibility of ventral root activity during fictive swimming in tadpoles (Xenopus laevis).
    Böser S; Horn ER
    Arch Ital Biol; 2006 May; 144(2):99-113. PubMed ID: 16642789
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Interaction between developing spinal locomotor networks in the neonatal mouse.
    Gordon IT; Dunbar MJ; Vanneste KJ; Whelan PJ
    J Neurophysiol; 2008 Jul; 100(1):117-28. PubMed ID: 18436636
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Locomotor-related networks in the lumbosacral enlargement of the adult spinal cat: activation through intraspinal microstimulation.
    Guevremont L; Renzi CG; Norton JA; Kowalczewski J; Saigal R; Mushahwar VK
    IEEE Trans Neural Syst Rehabil Eng; 2006 Sep; 14(3):266-72. PubMed ID: 17009485
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Spinal 5-HT7 receptors are critical for alternating activity during locomotion: in vitro neonatal and in vivo adult studies using 5-HT7 receptor knockout mice.
    Liu J; Akay T; Hedlund PB; Pearson KG; Jordan LM
    J Neurophysiol; 2009 Jul; 102(1):337-48. PubMed ID: 19458153
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Deciphering the organization and modulation of spinal locomotor central pattern generators.
    Gordon IT; Whelan PJ
    J Exp Biol; 2006 Jun; 209(Pt 11):2007-14. PubMed ID: 16709903
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Altered gravity affects ventral root activity during fictive swimming and the static vestibuloocular reflex in young tadpoles (Xenopus laevis).
    Böser S; Dournon C; Gualandris-Parisot L; Horn E
    Arch Ital Biol; 2008 Mar; 146(1):1-20. PubMed ID: 18666444
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Serotonin patterns locomotor network activity in the developing zebrafish by modulating quiescent periods.
    Brustein E; Chong M; Holmqvist B; Drapeau P
    J Neurobiol; 2003 Dec; 57(3):303-22. PubMed ID: 14608665
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Retrofitting larval neuromuscular circuits in the metamorphosing frog.
    Alley KE
    J Neurobiol; 1990 Oct; 21(7):1092-107. PubMed ID: 2258723
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Contribution of commissural projections to bulbospinal activation of locomotion in the in vitro neonatal rat spinal cord.
    Cowley KC; Zaporozhets E; Joundi RA; Schmidt BJ
    J Neurophysiol; 2009 Mar; 101(3):1171-8. PubMed ID: 19118107
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Endocannabinoid signaling in the spinal locomotor circuitry.
    El Manira A; Kyriakatos A; Nanou E; Mahmood R
    Brain Res Rev; 2008 Jan; 57(1):29-36. PubMed ID: 17719648
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Some notes on the organization of spinal and supraspinal premotor networks for locomotion.
    ten Donkelaar HJ
    Eur J Morphol; 1994 Aug; 32(2-4):156-67. PubMed ID: 7803162
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Origin of excitatory drive to a spinal locomotor network.
    Roberts A; Li WC; Soffe SR; Wolf E
    Brain Res Rev; 2008 Jan; 57(1):22-8. PubMed ID: 17825424
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Temporal Relationship of Ocular and Tail Segmental Movements Underlying Locomotor-Induced Gaze Stabilization During Undulatory Swimming in Larval Xenopus.
    Bacqué-Cazenave J; Courtand G; Beraneck M; Lambert FM; Combes D
    Front Neural Circuits; 2018; 12():95. PubMed ID: 30420798
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Organisation of the spinal central pattern generators for locomotion in the salamander: biology and modelling.
    Chevallier S; Jan Ijspeert A; Ryczko D; Nagy F; Cabelguen JM
    Brain Res Rev; 2008 Jan; 57(1):147-61. PubMed ID: 17920689
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Flexibility of the axial central pattern generator network for locomotion in the salamander.
    Ryczko D; Knüsel J; Crespi A; Lamarque S; Mathou A; Ijspeert AJ; Cabelguen JM
    J Neurophysiol; 2015 Mar; 113(6):1921-40. PubMed ID: 25540227
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.