These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

281 related articles for article (PubMed ID: 17629683)

  • 41. Reconfiguration of the spinal interneuronal network during locomotion in vertebrates.
    Frigon A
    J Neurophysiol; 2009 May; 101(5):2201-3. PubMed ID: 19279156
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Glial-toxin-mediated disruption of spinal cord locomotor network function and its modulation by 5-HT.
    Baudoux S; Parker D
    Neuroscience; 2008 Jun; 153(4):1332-43. PubMed ID: 18440149
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Role of spinal 5-HT2 receptor subtypes in quipazine-induced hindlimb movements after a low-thoracic spinal cord transection.
    Ung RV; Landry ES; Rouleau P; Lapointe NP; Rouillard C; Guertin PA
    Eur J Neurosci; 2008 Dec; 28(11):2231-42. PubMed ID: 19019202
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Kainate and metabolic perturbation mimicking spinal injury differentially contribute to early damage of locomotor networks in the in vitro neonatal rat spinal cord.
    Taccola G; Margaryan G; Mladinic M; Nistri A
    Neuroscience; 2008 Aug; 155(2):538-55. PubMed ID: 18602453
    [TBL] [Abstract][Full Text] [Related]  

  • 45. GABAergic and glycinergic interneuron expression during spinal cord development: dynamic interplay between inhibition and excitation in the control of ventral network outputs.
    Sibilla S; Ballerini L
    Prog Neurobiol; 2009 Sep; 89(1):46-60. PubMed ID: 19539686
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Serotonin modulates dendritic calcium influx in commissural interneurons in the mouse spinal locomotor network.
    Díaz-Ríos M; Dombeck DA; Webb WW; Harris-Warrick RM
    J Neurophysiol; 2007 Oct; 98(4):2157-67. PubMed ID: 17581844
    [TBL] [Abstract][Full Text] [Related]  

  • 47. From swimming to walking with a salamander robot driven by a spinal cord model.
    Ijspeert AJ; Crespi A; Ryczko D; Cabelguen JM
    Science; 2007 Mar; 315(5817):1416-20. PubMed ID: 17347441
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Initiation of locomotion in lampreys.
    Dubuc R; Brocard F; Antri M; Fénelon K; Gariépy JF; Smetana R; Ménard A; Le Ray D; Viana Di Prisco G; Pearlstein E; Sirota MG; Derjean D; St-Pierre M; Zielinski B; Auclair F; Veilleux D
    Brain Res Rev; 2008 Jan; 57(1):172-82. PubMed ID: 17916380
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Electrically evoked locomotor activity in the turtle spinal cord hemi-enlargement preparation.
    Samara RF; Currie SN
    Neurosci Lett; 2008 Aug; 441(1):105-9. PubMed ID: 18597937
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Axial dynamics during locomotion in vertebrates lesson from the salamander.
    Cabelguen JM; Ijspeert A; Lamarque S; Ryczko D
    Prog Brain Res; 2010; 187():149-62. PubMed ID: 21111206
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Plasticity of spinal cord locomotor networks and contribution of cation-chloride cotransporters.
    Vinay L; Jean-Xavier C
    Brain Res Rev; 2008 Jan; 57(1):103-10. PubMed ID: 17949820
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Myogenesis in the trunk and leg during development of the tadpole of Xenopus laevis (Daudin 1802).
    Muntz L
    J Embryol Exp Morphol; 1975 Jun; 33(3):757-74. PubMed ID: 1176869
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Do pacemakers drive the central pattern generator for locomotion in mammals?
    Brocard F; Tazerart S; Vinay L
    Neuroscientist; 2010 Apr; 16(2):139-55. PubMed ID: 20400712
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Sensory control and organization of neural networks mediating coordination of multisegmental organs for locomotion.
    Büschges A
    J Neurophysiol; 2005 Mar; 93(3):1127-35. PubMed ID: 15738270
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Development and aminergic neuromodulation of a spinal locomotor network controlling swimming in Xenopus larvae.
    Sillar KT; Reith CA; McDearmid JR
    Ann N Y Acad Sci; 1998 Nov; 860():318-32. PubMed ID: 9928322
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Tectal control of locomotion, steering, and eye movements in lamprey.
    Saitoh K; Ménard A; Grillner S
    J Neurophysiol; 2007 Apr; 97(4):3093-108. PubMed ID: 17303814
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Development of locomotor mechanisms in the frog.
    Stehouwer DJ; Farel PB
    J Neurophysiol; 1985 Jun; 53(6):1453-66. PubMed ID: 3874268
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Multiple spontaneous rhythmic activity patterns generated by the embryonic mouse spinal cord occur within a specific developmental time window.
    Yvert B; Branchereau P; Meyrand P
    J Neurophysiol; 2004 May; 91(5):2101-9. PubMed ID: 14724265
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Biological pattern generation: the cellular and computational logic of networks in motion.
    Grillner S
    Neuron; 2006 Dec; 52(5):751-66. PubMed ID: 17145498
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Pharmacological activation of locomotor patterns in larval and adult frog spinal cords.
    McClellan AD; Farel PB
    Brain Res; 1985 Apr; 332(1):119-30. PubMed ID: 3888346
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.