These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

270 related articles for article (PubMed ID: 17629683)

  • 61. Shaping appropriate locomotive motor output through interlimb neural pathway within spinal cord in humans.
    Kawashima N; Nozaki D; Abe MO; Nakazawa K
    J Neurophysiol; 2008 Jun; 99(6):2946-55. PubMed ID: 18450579
    [TBL] [Abstract][Full Text] [Related]  

  • 62. A method for unit recording in the lumbar spinal cord during locomotion of the conscious adult rat.
    Berg RW; Chen MT; Huang HC; Hsiao MC; Cheng H
    J Neurosci Methods; 2009 Aug; 182(1):49-54. PubMed ID: 19505501
    [TBL] [Abstract][Full Text] [Related]  

  • 63. The effects of botulinum neurotoxin A induced muscle paresis during a critical period upon muscle and spinal cord development in the rat.
    Clowry GJ; Walker L; Davies P
    Exp Neurol; 2006 Dec; 202(2):456-69. PubMed ID: 16928374
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Peeling back the layers of locomotor control in the spinal cord.
    McLean DL; Dougherty KJ
    Curr Opin Neurobiol; 2015 Aug; 33():63-70. PubMed ID: 25820136
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Swimming of larval zebrafish: fin-axis coordination and implications for function and neural control.
    Thorsen DH; Cassidy JJ; Hale ME
    J Exp Biol; 2004 Nov; 207(Pt 24):4175-83. PubMed ID: 15531638
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Changes in the control of gastric motor activity during metamorphosis in the amphibian Xenopus laevis, with special emphasis on purinergic mechanisms.
    Sundqvist M; Holmgren S
    J Exp Biol; 2008 Apr; 211(Pt 8):1270-80. PubMed ID: 18375852
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Modulation of respiratory activity by locomotion in lampreys.
    Gravel J; Brocard F; Gariépy JF; Lund JP; Dubuc R
    Neuroscience; 2007 Feb; 144(3):1120-32. PubMed ID: 17137720
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Extracellular magnesium enhances the damage to locomotor networks produced by metabolic perturbation mimicking spinal injury in the neonatal rat spinal cord in vitro.
    Margaryan G; Mladinic M; Mattioli C; Nistri A
    Neuroscience; 2009 Oct; 163(2):669-82. PubMed ID: 19591902
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Reticulospinal neurons, locomotor control and the development of tailswimming in Xenopus.
    van Mier P
    Acta Biol Hung; 1988; 39(2-3):161-77. PubMed ID: 3077003
    [TBL] [Abstract][Full Text] [Related]  

  • 70. The anuran Bauplan: a review of the adaptive, developmental, and genetic underpinnings of frog and tadpole morphology.
    Handrigan GR; Wassersug RJ
    Biol Rev Camb Philos Soc; 2007 Feb; 82(1):1-25. PubMed ID: 17313522
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Descending command systems for the initiation of locomotion in mammals.
    Jordan LM; Liu J; Hedlund PB; Akay T; Pearson KG
    Brain Res Rev; 2008 Jan; 57(1):183-91. PubMed ID: 17928060
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Ultrastructural aspects of metamorphic development of sensory ganglia in Bufo calamita.
    Alvarez MP; Solas MT; Fernández B
    J Hirnforsch; 1993; 34(1):1-7. PubMed ID: 8376750
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Excitatory components of the mammalian locomotor CPG.
    Kiehn O; Quinlan KA; Restrepo CE; Lundfald L; Borgius L; Talpalar AE; Endo T
    Brain Res Rev; 2008 Jan; 57(1):56-63. PubMed ID: 17988744
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Functional limb muscle innervation prior to cholinergic transmitter specification during early metamorphosis in
    Lambert FM; Cardoit L; Courty E; Bougerol M; Thoby-Brisson M; Simmers J; Tostivint H; Le Ray D
    Elife; 2018 May; 7():. PubMed ID: 29845935
    [TBL] [Abstract][Full Text] [Related]  

  • 75. A new method to study sensory modulation of locomotor networks by activation of thermosensitive cutaneous afferents using a hindlimb attached spinal cord preparation.
    Mandadi S; Whelan PJ
    J Neurosci Methods; 2009 Sep; 182(2):255-9. PubMed ID: 19540266
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Group I mGluRs increase locomotor network excitability in Xenopus tadpoles via presynaptic inhibition of glycinergic neurotransmission.
    Chapman RJ; Issberner JP; Sillar KT
    Eur J Neurosci; 2008 Sep; 28(5):903-13. PubMed ID: 18691329
    [TBL] [Abstract][Full Text] [Related]  

  • 77. [Motor control of gait].
    Boisacq-Schepens N
    Neurochirurgie; 1998 Sep; 44(3):158-66. PubMed ID: 9827431
    [TBL] [Abstract][Full Text] [Related]  

  • 78. The contribution of the NMDA receptor glycine site to rhythm generation during fictive swimming in Xenopus laevis tadpoles.
    Issberner JP; Sillar KT
    Eur J Neurosci; 2007 Nov; 26(9):2556-64. PubMed ID: 17970719
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Neuromodulation of Spinal Locomotor Networks in Rodents.
    Diaz-Ríos M; Guertin PA; Rivera-Oliver M
    Curr Pharm Des; 2017; 23(12):1741-1752. PubMed ID: 28120724
    [TBL] [Abstract][Full Text] [Related]  

  • 80. The intrinsic operation of the networks that make us locomote.
    Grillner S; El Manira A
    Curr Opin Neurobiol; 2015 Apr; 31():244-9. PubMed ID: 25599926
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.