These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
182 related articles for article (PubMed ID: 17630090)
1. Sustained abdominal compression during CPR raises coronary perfusion pressures as much as vasopressor drugs. Lottes AE; Rundell AE; Geddes LA; Kemeny AE; Otlewski MP; Babbs CF Resuscitation; 2007 Dec; 75(3):515-24. PubMed ID: 17630090 [TBL] [Abstract][Full Text] [Related]
2. Effects of sustained abdominal aorta compression on coronary perfusion pressures and restoration of spontaneous circulation during cardiopulmonary resuscitation in swine. Zhou M; Ran Q; Liu Y; Li Y; Liu T; Shen H Resuscitation; 2011 Aug; 82(8):1087-91. PubMed ID: 21550162 [TBL] [Abstract][Full Text] [Related]
3. A randomized comparison of manual, mechanical and high-impulse chest compression in a porcine model of prolonged ventricular fibrillation. Betz AE; Menegazzi JJ; Logue ES; Callaway CW; Wang HE Resuscitation; 2006 Jun; 69(3):495-501. PubMed ID: 16563597 [TBL] [Abstract][Full Text] [Related]
4. Effect of nitric oxide synthase modulation on resuscitation success in a swine ventricular fibrillation cardiac arrest model. Zhang Y; Boddicker KA; Rhee BJ; Davies LR; Kerber RE Resuscitation; 2005 Oct; 67(1):127-34. PubMed ID: 16039037 [TBL] [Abstract][Full Text] [Related]
5. A new device producing manual sternal compression with thoracic constraint for cardiopulmonary resuscitation. Niemann JT; Rosborough JP; Kassabian L; Salami B Resuscitation; 2006 May; 69(2):295-301. PubMed ID: 16457933 [TBL] [Abstract][Full Text] [Related]
6. A new cardiopulmonary resuscitation method using only rhythmic abdominal compression: a preliminary report. Geddes LA; Rundell A; Lottes A; Kemeny A; Otlewski M Am J Emerg Med; 2007 Sep; 25(7):786-90. PubMed ID: 17870482 [TBL] [Abstract][Full Text] [Related]
7. Effects of incomplete chest wall decompression during cardiopulmonary resuscitation on coronary and cerebral perfusion pressures in a porcine model of cardiac arrest. Yannopoulos D; McKnite S; Aufderheide TP; Sigurdsson G; Pirrallo RG; Benditt D; Lurie KG Resuscitation; 2005 Mar; 64(3):363-72. PubMed ID: 15733767 [TBL] [Abstract][Full Text] [Related]
8. Design of near-optimal waveforms for chest and abdominal compression and decompression in CPR using computer-simulated evolution. Babbs CF Resuscitation; 2006 Feb; 68(2):277-93. PubMed ID: 16388884 [TBL] [Abstract][Full Text] [Related]
10. Effects of an impedance threshold device on hemodynamics and restoration of spontaneous circulation in prolonged porcine ventricular fibrillation. Menegazzi JJ; Salcido DD; Menegazzi MT; Rittenberger JC; Suffoletto BP; Logue ES; Mader TJ Prehosp Emerg Care; 2007; 11(2):179-85. PubMed ID: 17454804 [TBL] [Abstract][Full Text] [Related]
11. Haemodynamic effects of adrenaline (epinephrine) depend on chest compression quality during cardiopulmonary resuscitation in pigs. Pytte M; Kramer-Johansen J; Eilevstjønn J; Eriksen M; Strømme TA; Godang K; Wik L; Steen PA; Sunde K Resuscitation; 2006 Dec; 71(3):369-78. PubMed ID: 17023108 [TBL] [Abstract][Full Text] [Related]
12. Methods for calculating coronary perfusion pressure during CPR. Otlewski MP; Geddes LA; Pargett M; Babbs CF Cardiovasc Eng; 2009 Sep; 9(3):98-103. PubMed ID: 19662530 [TBL] [Abstract][Full Text] [Related]
13. The effect of the preshock pause on coronary perfusion pressure decay and rescue shock outcome in porcine ventricular fibrillation. Mader TJ; Paquette AT; Salcido DD; Nathanson BH; Menegazzi JJ Prehosp Emerg Care; 2009; 13(4):487-94. PubMed ID: 19731161 [TBL] [Abstract][Full Text] [Related]
14. Comparison of CPR outcome predictors between rhythmic abdominal compression and continuous chest compression CPR techniques. Kammeyer RM; Pargett MS; Rundell AE Emerg Med J; 2014 May; 31(5):394-400. PubMed ID: 23471166 [TBL] [Abstract][Full Text] [Related]
15. Sustained manual abdominal compression during cardiopulmonary resuscitation in a pig model: a preliminary investigation. Park CH; Jeung KW; Min YI; Heo T Emerg Med J; 2010 Jan; 27(1):8-12. PubMed ID: 20028997 [TBL] [Abstract][Full Text] [Related]
16. Cardiopulmonary resuscitation with a novel chest compression device in a porcine model of cardiac arrest: improved hemodynamics and mechanisms. Halperin HR; Paradis N; Ornato JP; Zviman M; Lacorte J; Lardo A; Kern KB J Am Coll Cardiol; 2004 Dec; 44(11):2214-20. PubMed ID: 15582320 [TBL] [Abstract][Full Text] [Related]
18. Evidence favoring the use of an alpha2-selective vasopressor agent for cardiopulmonary resuscitation. Pellis T; Weil MH; Tang W; Sun S; Xie J; Song L; Checchia P Circulation; 2003 Nov; 108(21):2716-21. PubMed ID: 14623815 [TBL] [Abstract][Full Text] [Related]
19. Selective beta blockade improves the outcome of cardiopulmonary resuscitation in a swine model of cardiac arrest. Theochari E; Xanthos T; Papadimitriou D; Demestiha T; Condilis N; Tsirikos-Karapanos N; Tsiftsi K; Papadimitriou L Ann Ital Chir; 2008; 79(6):409-14. PubMed ID: 19354034 [TBL] [Abstract][Full Text] [Related]