These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
314 related articles for article (PubMed ID: 17630124)
1. Analysis of hemin effect on lactate reduction in Lactococcus lactis. Nagayasu M; Wardani AK; Nagahisa K; Shimizu H; Shioya S J Biosci Bioeng; 2007 Jun; 103(6):529-34. PubMed ID: 17630124 [TBL] [Abstract][Full Text] [Related]
2. Modelling the production of nisin by Lactococcus lactis in fed-batch culture. Lv W; Zhang X; Cong W Appl Microbiol Biotechnol; 2005 Aug; 68(3):322-6. PubMed ID: 15692804 [TBL] [Abstract][Full Text] [Related]
3. Nisin production of Lactococcus lactis N8 with hemin-stimulated cell respiration in fed-batch fermentation system. Kördikanlıoğlu B; Şimşek Ö; Saris PE Biotechnol Prog; 2015; 31(3):678-85. PubMed ID: 25826783 [TBL] [Abstract][Full Text] [Related]
4. Enhancement of nisin production by Lactococcus lactis in periodically re-alkalized cultures. Guerra NP; Castro LP Biotechnol Appl Biochem; 2003 Oct; 38(Pt 2):157-67. PubMed ID: 12793859 [TBL] [Abstract][Full Text] [Related]
5. Variable volume fed-batch fermentation for nisin production by Lactococcus lactis subsp. lactis W28. Wu Z; Wang L; Jing Y; Li X; Zhao Y Appl Biochem Biotechnol; 2009 Mar; 152(3):372-82. PubMed ID: 18712289 [TBL] [Abstract][Full Text] [Related]
6. Kinetics of Lactococcus lactis growth and metabolite formation under aerobic and anaerobic conditions in the presence or absence of hemin. Lan CQ; Oddone G; Mills DA; Block DE Biotechnol Bioeng; 2006 Dec; 95(6):1070-80. PubMed ID: 16807924 [TBL] [Abstract][Full Text] [Related]
7. Production of nisin with continuous adsorption to Amberlite XAD-4 resin using Lactococcus lactis N8 and L. lactis LAC48. Tolonen M; Saris PE; Siika-Aho M Appl Microbiol Biotechnol; 2004 Feb; 63(6):659-65. PubMed ID: 12910326 [TBL] [Abstract][Full Text] [Related]
8. Nisin production by a mixed-culture system consisting of Lactococcus lactis and Kluyveromyces marxianus. Shimizu H; Mizuguchi T; Tanaka E; Shioya S Appl Environ Microbiol; 1999 Jul; 65(7):3134-41. PubMed ID: 10388714 [TBL] [Abstract][Full Text] [Related]
9. Two different pathways for D-xylose metabolism and the effect of xylose concentration on the yield coefficient of L-lactate in mixed-acid fermentation by the lactic acid bacterium Lactococcus lactis IO-1. Tanaka K; Komiyama A; Sonomoto K; Ishizaki A; Hall SJ; Stanbury PF Appl Microbiol Biotechnol; 2002 Oct; 60(1-2):160-7. PubMed ID: 12382058 [TBL] [Abstract][Full Text] [Related]
10. Effects of glucose and nitrogen source concentration on batch fermentation kinetics of Lactococcus lactis under hemin-stimulated respirative condition. Razvi A; Zhang Z; Lan CQ Biotechnol Prog; 2008; 24(4):852-8. PubMed ID: 19194896 [TBL] [Abstract][Full Text] [Related]
11. Engineering the central pathways in Lactococcus lactis: functional expression of the phosphofructokinase (pfk) and alternative oxidase (aox1) genes from Aspergillus niger in Lactococcus lactis facilitates improved carbon conversion rates under oxidizing conditions. Papagianni M; Avramidis N Enzyme Microb Technol; 2012 Aug; 51(3):125-30. PubMed ID: 22759530 [TBL] [Abstract][Full Text] [Related]
12. The level of pyruvate-formate lyase controls the shift from homolactic to mixed-acid product formation in Lactococcus lactis. Melchiorsen CR; Jokumsen KV; Villadsen J; Israelsen H; Arnau J Appl Microbiol Biotechnol; 2002 Mar; 58(3):338-44. PubMed ID: 11935185 [TBL] [Abstract][Full Text] [Related]
13. Suppression of lactate production by aerobic fed-batch cultures of Lactococcus lactis. Sano A; Takatera M; Kawai M; Ichinose R; Yamasaki-Yashiki S; Katakura Y J Biosci Bioeng; 2020 Oct; 130(4):402-408. PubMed ID: 32669208 [TBL] [Abstract][Full Text] [Related]
14. Stress response kinetics of two nisin producer strains of Lactococcus lactis spp. lactis. Simşek O; Buzrul S; Akkoç N; Alpas H; Akçelik M Appl Biochem Biotechnol; 2009 Aug; 158(2):387-97. PubMed ID: 18769876 [TBL] [Abstract][Full Text] [Related]
15. Improvement of nisin production in pH feed-back controlled, fed-batch culture by Lactococcus lactis subsp. lactis. Lv W; Cong W; Cai Z Biotechnol Lett; 2004 Nov; 26(22):1713-6. PubMed ID: 15604824 [TBL] [Abstract][Full Text] [Related]
16. Enhanced production of nisin by co-culture of Lactococcus lactis sub sp. lactis and Yarrowia lipolytica in molasses based medium. Ariana M; Hamedi J J Biotechnol; 2017 Aug; 256():21-26. PubMed ID: 28694185 [TBL] [Abstract][Full Text] [Related]
17. Lactococcus lactis as a cell factory: a twofold increase in phosphofructokinase activity results in a proportional increase in specific rates of glucose uptake and lactate formation. Papagianni M; Avramidis N Enzyme Microb Technol; 2011 Jul; 49(2):197-202. PubMed ID: 22112409 [TBL] [Abstract][Full Text] [Related]
18. Optimization of fermentation conditions for the expression of sweet-tasting protein brazzein in Lactococcus lactis. Berlec A; Tompa G; Slapar N; Fonović UP; Rogelj I; Strukelj B Lett Appl Microbiol; 2008 Feb; 46(2):227-31. PubMed ID: 18215220 [TBL] [Abstract][Full Text] [Related]
19. Optimization of fed-batch production of the model recombinant protein GFP in Lactococcus lactis. Oddone GM; Lan CQ; Rawsthorne H; Mills DA; Block DE Biotechnol Bioeng; 2007 Apr; 96(6):1127-38. PubMed ID: 17117427 [TBL] [Abstract][Full Text] [Related]
20. Evaluation of culture medium for nisin production in a repeated-batch biofilm reactor. Pongtharangkul T; Demirci A Biotechnol Prog; 2006; 22(1):217-24. PubMed ID: 16454513 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]