BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

602 related articles for article (PubMed ID: 17630132)

  • 41. Alteration of product formation by directed mutagenesis and truncation of the multiple-product sesquiterpene synthases delta-selinene synthase and gamma-humulene synthase.
    Little DB; Croteau RB
    Arch Biochem Biophys; 2002 Jun; 402(1):120-35. PubMed ID: 12051690
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Crystal structures of undecaprenyl pyrophosphate synthase in complex with magnesium, isopentenyl pyrophosphate, and farnesyl thiopyrophosphate: roles of the metal ion and conserved residues in catalysis.
    Guo RT; Ko TP; Chen AP; Kuo CJ; Wang AH; Liang PH
    J Biol Chem; 2005 May; 280(21):20762-74. PubMed ID: 15788389
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Improved squalene production via modulation of the methylerythritol 4-phosphate pathway and heterologous expression of genes from Streptomyces peucetius ATCC 27952 in Escherichia coli.
    Ghimire GP; Lee HC; Sohng JK
    Appl Environ Microbiol; 2009 Nov; 75(22):7291-3. PubMed ID: 19767465
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Identifying Structural Determinants of Product Specificity in
    Maheshwari S; Kim YS; Aripirala S; Murphy M; Amzel LM; Gabelli SB
    Biochemistry; 2020 Jul; 59(29):2751-2759. PubMed ID: 32584028
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Fusion of farnesyldiphosphate synthase and epi-aristolochene synthase, a sesquiterpene cyclase involved in capsidiol biosynthesis in Nicotiana tabacum.
    Brodelius M; Lundgren A; Mercke P; Brodelius PE
    Eur J Biochem; 2002 Jul; 269(14):3570-7. PubMed ID: 12135497
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Purification and properties of geranylgeranyl-diphosphate synthase from bovine brain.
    Sagami H; Morita Y; Ogura K
    J Biol Chem; 1994 Aug; 269(32):20561-6. PubMed ID: 8051156
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Monoterpene biosynthesis pathway construction in Escherichia coli.
    Carter OA; Peters RJ; Croteau R
    Phytochemistry; 2003 Sep; 64(2):425-33. PubMed ID: 12943759
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Farnesyl diphosphate synthase assay.
    Arró M; Manzano D; Ferrer A
    Methods Mol Biol; 2014; 1153():41-53. PubMed ID: 24777789
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Biochemical and structural studies with prenyl diphosphate analogues provide insights into isoprenoid recognition by protein farnesyl transferase.
    Turek-Etienne TC; Strickland CL; Distefano MD
    Biochemistry; 2003 Apr; 42(13):3716-24. PubMed ID: 12667062
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Farnesyl diphosphate synthase: the art of compromise between substrate selectivity and stereoselectivity.
    Thulasiram HV; Poulter CD
    J Am Chem Soc; 2006 Dec; 128(49):15819-23. PubMed ID: 17147392
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Biosynthesis of terpenes: studies on 1-hydroxy-2-methyl-2-(E)-butenyl 4-diphosphate reductase.
    Adam P; Hecht S; Eisenreich W; Kaiser J; Grawert T; Arigoni D; Bacher A; Rohdich F
    Proc Natl Acad Sci U S A; 2002 Sep; 99(19):12108-13. PubMed ID: 12198182
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Determination of residues responsible for substrate and product specificity of Solanum habrochaites short-chain cis-prenyltransferases.
    Kang JH; Gonzales-Vigil E; Matsuba Y; Pichersky E; Barry CS
    Plant Physiol; 2014 Jan; 164(1):80-91. PubMed ID: 24254315
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Decaprenyl pyrophosphate synthetase from mitochondria of pig liver.
    Ishii K; Sagami H; Ogura K
    Biochem Biophys Res Commun; 1983 Oct; 116(2):500-6. PubMed ID: 6651825
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Biosynthesis of nerol from glucose in the metabolic engineered Escherichia coli.
    Zong Z; Hua Q; Tong X; Li D; Wang C; Guo D; Liu Z
    Bioresour Technol; 2019 Sep; 287():121410. PubMed ID: 31076292
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Partial purification and characterization of the short-chain prenyltransferases, gernayl diphospate synthase and farnesyl diphosphate synthase, from Abies grandis (grand fir).
    Tholl D; Croteau R; Gershenzon J
    Arch Biochem Biophys; 2001 Feb; 386(2):233-42. PubMed ID: 11368347
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Escherichia coli dimethylallyl diphosphate:tRNA dimethylallyltransferase: a binding mechanism for recombinant enzyme.
    Moore JA; Poulter CD
    Biochemistry; 1997 Jan; 36(3):604-14. PubMed ID: 9012675
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The carboxyl-terminal region of the geranylgeranyl diphosphate synthase is indispensable for the stabilization of the region involved in substrate binding and catalysis.
    Matsumura Y; Kidokoro T; Miyagi Y; Marilingaiah NR; Sagami H
    J Biochem; 2007 Oct; 142(4):533-7. PubMed ID: 17846065
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Directed evolution of Escherichia coli farnesyl diphosphate synthase (IspA) reveals novel structural determinants of chain length specificity.
    Lee PC; Petri R; Mijts BN; Watts KT; Schmidt-Dannert C
    Metab Eng; 2005 Jan; 7(1):18-26. PubMed ID: 15721807
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Enzymatic synthesis of isotopically labeled isoprenoid diphosphates.
    Christensen DJ; Poulter CD
    Bioorg Med Chem; 1994 Jul; 2(7):631-7. PubMed ID: 7858969
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Significance of Phe-220 and Gln-221 in the catalytic mechanism of farnesyl diphosphate synthase of Bacillus stearothermophilus.
    Koyama T; Tajima M; Nishino T; Ogura K
    Biochem Biophys Res Commun; 1995 Jul; 212(2):681-6. PubMed ID: 7626083
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 31.