These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
1219 related articles for article (PubMed ID: 17630146)
1. Comparative performance of three ceramic bone graft substitutes. Hing KA; Wilson LF; Buckland T Spine J; 2007; 7(4):475-90. PubMed ID: 17630146 [TBL] [Abstract][Full Text] [Related]
2. Reconstruction of calvarial defect of rabbits using porous calcium silicate bioactive ceramics. Xu S; Lin K; Wang Z; Chang J; Wang L; Lu J; Ning C Biomaterials; 2008 Jun; 29(17):2588-96. PubMed ID: 18378303 [TBL] [Abstract][Full Text] [Related]
3. Early effect of platelet-rich plasma on bone healing in combination with an osteoconductive material in rat cranial defects. Plachokova AS; van den Dolder J; Stoelinga PJ; Jansen JA Clin Oral Implants Res; 2007 Apr; 18(2):244-51. PubMed ID: 17348890 [TBL] [Abstract][Full Text] [Related]
4. Effect of silicon level on rate, quality and progression of bone healing within silicate-substituted porous hydroxyapatite scaffolds. Hing KA; Revell PA; Smith N; Buckland T Biomaterials; 2006 Oct; 27(29):5014-26. PubMed ID: 16790272 [TBL] [Abstract][Full Text] [Related]
5. Bone regeneration of porous beta-tricalcium phosphate (Conduit TCP) and of biphasic calcium phosphate ceramic (Biosel) in trabecular defects in sheep. Bodde EW; Wolke JG; Kowalski RS; Jansen JA J Biomed Mater Res A; 2007 Sep; 82(3):711-22. PubMed ID: 17326225 [TBL] [Abstract][Full Text] [Related]
6. Bone healing and graft resorption of autograft, anorganic bovine bone and beta-tricalcium phosphate. A histologic and histomorphometric study in the mandibles of minipigs. Jensen SS; Broggini N; Hjørting-Hansen E; Schenk R; Buser D Clin Oral Implants Res; 2006 Jun; 17(3):237-43. PubMed ID: 16672017 [TBL] [Abstract][Full Text] [Related]
7. Beta-TCP bone graft substitutes in a bilateral rabbit tibial defect model. Walsh WR; Vizesi F; Michael D; Auld J; Langdown A; Oliver R; Yu Y; Irie H; Bruce W Biomaterials; 2008 Jan; 29(3):266-71. PubMed ID: 18029011 [TBL] [Abstract][Full Text] [Related]
8. Quantitative analysis of the resorption and osteoconduction of a macroporous calcium phosphate bone cement for the repair of a critical size defect in the femoral condyle. Miño-Fariña N; Muñoz-Guzón F; López-Peña M; Ginebra MP; Del Valle-Fresno S; Ayala D; González-Cantalapiedra A Vet J; 2009 Feb; 179(2):264-72. PubMed ID: 17980634 [TBL] [Abstract][Full Text] [Related]
9. Biphasic calcium phosphate nano-composite scaffolds reinforced with bioglass provide a synthetic alternative to autografts in a canine tibiofibula defect model. Tang D; Xu G; Yang Z; Holz J; Ye X; Cai S; Yuan W; Wang Y Chin Med J (Engl); 2014; 127(7):1334-8. PubMed ID: 24709190 [TBL] [Abstract][Full Text] [Related]
10. Bone regeneration using beta-tricalcium phosphate in a calcium sulfate matrix. Podaropoulos L; Veis AA; Papadimitriou S; Alexandridis C; Kalyvas D J Oral Implantol; 2009; 35(1):28-36. PubMed ID: 19288885 [TBL] [Abstract][Full Text] [Related]
11. Comparative study of biphasic calcium phosphate with beta-tricalcium phosphate in rat cranial defects--A molecular-biological and histological study. Kunert-Keil C; Scholz F; Gedrange T; Gredes T Ann Anat; 2015 May; 199():79-84. PubMed ID: 24439994 [TBL] [Abstract][Full Text] [Related]
12. In vivo evaluation of resorbable bone graft substitutes in a rabbit tibial defect model. Stubbs D; Deakin M; Chapman-Sheath P; Bruce W; Debes J; Gillies RM; Walsh WR Biomaterials; 2004 Sep; 25(20):5037-44. PubMed ID: 15109866 [TBL] [Abstract][Full Text] [Related]
14. Microporous calcium phosphate ceramics as tissue engineering scaffolds for the repair of osteochondral defects: Histological results. Bernstein A; Niemeyer P; Salzmann G; Südkamp NP; Hube R; Klehm J; Menzel M; von Eisenhart-Rothe R; Bohner M; Görz L; Mayr HO Acta Biomater; 2013 Jul; 9(7):7490-505. PubMed ID: 23528497 [TBL] [Abstract][Full Text] [Related]
15. Bone regeneration of critical calvarial defect in goat model by PLGA/TCP/rhBMP-2 scaffolds prepared by low-temperature rapid-prototyping technology. Yu D; Li Q; Mu X; Chang T; Xiong Z Int J Oral Maxillofac Surg; 2008 Oct; 37(10):929-34. PubMed ID: 18768295 [TBL] [Abstract][Full Text] [Related]
16. A resorbable porous ceramic composite bone graft substitute in a rabbit metaphyseal defect model. Walsh WR; Chapman-Sheath PJ; Cain S; Debes J; Bruce WJ; Svehla MJ; Gillies RM J Orthop Res; 2003 Jul; 21(4):655-61. PubMed ID: 12798065 [TBL] [Abstract][Full Text] [Related]
17. A comparison of ProOsteon, DBX, and collagraft in a rabbit model. Leupold JA; Barfield WR; An YH; Hartsock LA J Biomed Mater Res B Appl Biomater; 2006 Nov; 79(2):292-7. PubMed ID: 16649170 [TBL] [Abstract][Full Text] [Related]
18. Healing of rabbit calvarial bone defects using biphasic calcium phosphate ceramics made of submicron-sized grains with a hierarchical pore structure. Park JW; Kim ES; Jang JH; Suh JY; Park KB; Hanawa T Clin Oral Implants Res; 2010 Mar; 21(3):268-76. PubMed ID: 20074242 [TBL] [Abstract][Full Text] [Related]
19. Bone healing with an in situ-formed bioresorbable polyethylene glycol hydrogel membrane in rabbit calvarial defects. Humber CC; Sándor GK; Davis JM; Peel SA; Brkovic BM; Kim YD; Holmes HI; Clokie CM Oral Surg Oral Med Oral Pathol Oral Radiol Endod; 2010 Mar; 109(3):372-84. PubMed ID: 20060340 [TBL] [Abstract][Full Text] [Related]
20. Combination of platelet-rich plasma with polycaprolactone-tricalcium phosphate scaffolds for segmental bone defect repair. Rai B; Oest ME; Dupont KM; Ho KH; Teoh SH; Guldberg RE J Biomed Mater Res A; 2007 Jun; 81(4):888-99. PubMed ID: 17236215 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]