These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 1763024)

  • 21. Arabidopsis hot mutants define multiple functions required for acclimation to high temperatures.
    Hong SW; Lee U; Vierling E
    Plant Physiol; 2003 Jun; 132(2):757-67. PubMed ID: 12805605
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Yeast thermotolerance does not require protein synthesis.
    Hall BG
    J Bacteriol; 1983 Dec; 156(3):1363-5. PubMed ID: 6358199
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Molecular events associated with acquisition of heat tolerance by the yeast Saccharomyces cerevisiae.
    Piper PW
    FEMS Microbiol Rev; 1993 Aug; 11(4):339-55. PubMed ID: 8398211
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Involvement of Stat3 phosphorylation in mild heat shock-induced thermotolerance.
    Matozaki M; Saito Y; Yasutake R; Munira S; Kaibori Y; Yukawa A; Tada M; Nakayama Y
    Exp Cell Res; 2019 Apr; 377(1-2):67-74. PubMed ID: 30776355
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Stimulation of survival capacity in heat shocked cells by subsequent exposure to minute amounts of chemical stressors; role of similarity in hsp-inducing effects.
    Wiegant FA; Souren JE; van Wijk R
    Hum Exp Toxicol; 1999 Jul; 18(7):460-70. PubMed ID: 10454079
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Heat shock proteins, thermotolerance, and their relevance to clinical hyperthermia.
    Li GC; Mivechi NF; Weitzel G
    Int J Hyperthermia; 1995; 11(4):459-88. PubMed ID: 7594802
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Activity of the plasma membrane H(+)-ATPase is a key physiological determinant of thermotolerance in Saccharomyces cerevisiae.
    Coote PJ; Jones MV; Seymour IJ; Rowe DL; Ferdinando DP; McArthur AJ; Cole MB
    Microbiology (Reading); 1994 Aug; 140 ( Pt 8)():1881-90. PubMed ID: 7921241
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The FKB2 gene of Saccharomyces cerevisiae, encoding the immunosuppressant-binding protein FKBP-13, is regulated in response to accumulation of unfolded proteins in the endoplasmic reticulum.
    Partaledis JA; Berlin V
    Proc Natl Acad Sci U S A; 1993 Jun; 90(12):5450-4. PubMed ID: 7685904
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Heat shock response of Saccharomyces cerevisiae mutants altered in cyclic AMP-dependent protein phosphorylation.
    Shin DY; Matsumoto K; Iida H; Uno I; Ishikawa T
    Mol Cell Biol; 1987 Jan; 7(1):244-50. PubMed ID: 3031463
    [TBL] [Abstract][Full Text] [Related]  

  • 30. TPK gene products mediate cAMP-independent thermotolerance in Saccharomyces cerevisiae.
    Coote PJ; Jones MV; Edgar K; Cole MB
    J Gen Microbiol; 1992 Dec; 138(12):2551-7. PubMed ID: 1336794
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Induction of heat shock proteins in Chinese hamster ovary cells and development of thermotolerance by intermediate concentrations of puromycin.
    Lee YJ; Dewey WC
    J Cell Physiol; 1987 Jul; 132(1):1-11. PubMed ID: 3597546
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Oxidative stress is involved in heat-induced cell death in Saccharomyces cerevisiae.
    Davidson JF; Whyte B; Bissinger PH; Schiestl RH
    Proc Natl Acad Sci U S A; 1996 May; 93(10):5116-21. PubMed ID: 8643537
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Role of glutathione in heat-shock-induced cell death of Saccharomyces cerevisiae.
    Sugiyama K; Kawamura A; Izawa S; Inoue Y
    Biochem J; 2000 Nov; 352 Pt 1(Pt 1):71-8. PubMed ID: 11062059
    [TBL] [Abstract][Full Text] [Related]  

  • 34. An Arabidopsis heat shock protein complements a thermotolerance defect in yeast.
    Schirmer EC; Lindquist S; Vierling E
    Plant Cell; 1994 Dec; 6(12):1899-909. PubMed ID: 7866032
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Induction of heat shock protein synthesis in murine tumors during the development of thermotolerance.
    Li GC; Mak JY
    Cancer Res; 1985 Aug; 45(8):3816-24. PubMed ID: 4016752
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Atypical heat shock response and acquisition of thermotolerance in P388D1 cells.
    Oommen D; Giricz Z; Srinivas UK; Samali A
    Biochem Biophys Res Commun; 2013 Jan; 430(1):236-40. PubMed ID: 23142227
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effect of cycloheximide or puromycin on induction of thermotolerance by sodium arsenite in Chinese hamster ovary cells: involvement of heat shock proteins.
    Lee YJ; Dewey WC
    J Cell Physiol; 1987 Jul; 132(1):41-8. PubMed ID: 3597553
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Targeted disruption of hsf1 leads to lack of thermotolerance and defines tissue-specific regulation for stress-inducible Hsp molecular chaperones.
    Zhang Y; Huang L; Zhang J; Moskophidis D; Mivechi NF
    J Cell Biochem; 2002; 86(2):376-93. PubMed ID: 12112007
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Low pH suppresses synthesis of heat-shock proteins and thermotolerance.
    Hang H; Fox MH
    Radiat Res; 1994 Oct; 140(1):24-30. PubMed ID: 7938451
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Hsp26 is not required for growth at high temperatures, nor for thermotolerance, spore development, or germination.
    Petko L; Lindquist S
    Cell; 1986 Jun; 45(6):885-94. PubMed ID: 3518952
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.