These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
205 related articles for article (PubMed ID: 17630699)
1. Sulbactam forms only minimal amounts of irreversible acrylate-enzyme with SHV-1 beta-lactamase. Totir MA; Helfand MS; Carey MP; Sheri A; Buynak JD; Bonomo RA; Carey PR Biochemistry; 2007 Aug; 46(31):8980-7. PubMed ID: 17630699 [TBL] [Abstract][Full Text] [Related]
2. Following the reactions of mechanism-based inhibitors with beta-lactamase by Raman crystallography. Helfand MS; Totir MA; Carey MP; Hujer AM; Bonomo RA; Carey PR Biochemistry; 2003 Nov; 42(46):13386-92. PubMed ID: 14621983 [TBL] [Abstract][Full Text] [Related]
3. Different intermediate populations formed by tazobactam, sulbactam, and clavulanate reacting with SHV-1 beta-lactamases: Raman crystallographic evidence. Kalp M; Totir MA; Buynak JD; Carey PR J Am Chem Soc; 2009 Feb; 131(6):2338-47. PubMed ID: 19161282 [TBL] [Abstract][Full Text] [Related]
4. Why clinically used tazobactam and sulbactam are poor inhibitors of OXA-10 beta-lactamase: Raman crystallographic evidence. Totir MA; Cha J; Ishiwata A; Wang B; Sheri A; Anderson VE; Buynak J; Mobashery S; Carey PR Biochemistry; 2008 Apr; 47(13):4094-101. PubMed ID: 18324783 [TBL] [Abstract][Full Text] [Related]
5. Raman crystallographic studies of the intermediates formed by Ser130Gly SHV, a beta-lactamase that confers resistance to clinical inhibitors. Helfand MS; Taracila MA; Totir MA; Bonomo RA; Buynak JD; van den Akker F; Carey PR Biochemistry; 2007 Jul; 46(29):8689-99. PubMed ID: 17595114 [TBL] [Abstract][Full Text] [Related]
6. Effect of the inhibitor-resistant M69V substitution on the structures and populations of trans-enamine beta-lactamase intermediates. Totir MA; Padayatti PS; Helfand MS; Carey MP; Bonomo RA; Carey PR; van den Akker F Biochemistry; 2006 Oct; 45(39):11895-904. PubMed ID: 17002290 [TBL] [Abstract][Full Text] [Related]
7. High resolution crystal structures of the trans-enamine intermediates formed by sulbactam and clavulanic acid and E166A SHV-1 {beta}-lactamase. Padayatti PS; Helfand MS; Totir MA; Carey MP; Carey PR; Bonomo RA; van den Akker F J Biol Chem; 2005 Oct; 280(41):34900-7. PubMed ID: 16055923 [TBL] [Abstract][Full Text] [Related]
8. Tazobactam forms a stoichiometric trans-enamine intermediate in the E166A variant of SHV-1 beta-lactamase: 1.63 A crystal structure. Padayatti PS; Helfand MS; Totir MA; Carey MP; Hujer AM; Carey PR; Bonomo RA; van den Akker F Biochemistry; 2004 Feb; 43(4):843-8. PubMed ID: 14744126 [TBL] [Abstract][Full Text] [Related]
9. Detecting a quasi-stable imine species on the reaction pathway of SHV-1 β-lactamase and 6β-(hydroxymethyl)penicillanic acid sulfone. Che T; Rodkey EA; Bethel CR; Shanmugam S; Ding Z; Pusztai-Carey M; Nottingham M; Chai W; Buynak JD; Bonomo RA; van den Akker F; Carey PR Biochemistry; 2015 Jan; 54(3):734-43. PubMed ID: 25536850 [TBL] [Abstract][Full Text] [Related]
10. Computer modeling on the tautomerization of sulbactam intermediate in SHV-1 β-lactamases: E166A mutant vs. wild type. Li R; Wang YT; Chen CL J Mol Graph Model; 2013 Mar; 40():131-9. PubMed ID: 23395858 [TBL] [Abstract][Full Text] [Related]
11. Why the extended-spectrum beta-lactamases SHV-2 and SHV-5 are "hypersusceptible" to mechanism-based inhibitors. Kalp M; Bethel CR; Bonomo RA; Carey PR Biochemistry; 2009 Oct; 48(41):9912-20. PubMed ID: 19736945 [TBL] [Abstract][Full Text] [Related]
12. Role of E166 in the imine to enamine tautomerization of the clinical beta-lactamase inhibitor sulbactam. Kalp M; Buynak JD; Carey PR Biochemistry; 2009 Nov; 48(43):10196-8. PubMed ID: 19791797 [TBL] [Abstract][Full Text] [Related]
13. Overcoming resistance to beta-lactamase inhibitors: comparing sulbactam to novel inhibitors against clavulanate resistant SHV enzymes with substitutions at Ambler position 244. Thomson JM; Distler AM; Bonomo RA Biochemistry; 2007 Oct; 46(40):11361-8. PubMed ID: 17848099 [TBL] [Abstract][Full Text] [Related]
14. Theoretical investigation on reaction of sulbactam with wild-type SHV-1 β-lactamase: acylation, tautomerization, and deacylation. Li R; Liao JM; Gu CR; Wang YT; Chen CL J Phys Chem B; 2011 Sep; 115(34):10298-310. PubMed ID: 21797222 [TBL] [Abstract][Full Text] [Related]
15. Why tazobactam and sulbactam have different intermediates population with SHV-1 β-lactamase: a molecular dynamics study. Li R; Wang YT; Chen CL J Mol Model; 2013 Jun; 19(6):2519-24. PubMed ID: 23455927 [TBL] [Abstract][Full Text] [Related]
16. Inhibitor-resistant class A beta-lactamases: consequences of the Ser130-to-Gly mutation seen in Apo and tazobactam structures of the SHV-1 variant. Sun T; Bethel CR; Bonomo RA; Knox JR Biochemistry; 2004 Nov; 43(44):14111-7. PubMed ID: 15518561 [TBL] [Abstract][Full Text] [Related]
17. Carbapenems and SHV-1 beta-lactamase form different acyl-enzyme populations in crystals and solution. Kalp M; Carey PR Biochemistry; 2008 Nov; 47(45):11830-7. PubMed ID: 18922024 [TBL] [Abstract][Full Text] [Related]
18. Penam sulfones and β-lactamase inhibition: SA2-13 and the importance of the C2 side chain length and composition. Rodkey EA; Winkler ML; Bethel CR; Pagadala SR; Buynak JD; Bonomo RA; van den Akker F PLoS One; 2014; 9(1):e85892. PubMed ID: 24454944 [TBL] [Abstract][Full Text] [Related]
19. New Conformations of Acylation Adducts of Inhibitors of β-Lactamase from Mycobacterium tuberculosis. Tassoni R; Blok A; Pannu NS; Ubbink M Biochemistry; 2019 Feb; 58(7):997-1009. PubMed ID: 30632739 [TBL] [Abstract][Full Text] [Related]
20. Inhibition of the SHV-1 beta-lactamase by sulfones: crystallographic observation of two reaction intermediates with tazobactam. Kuzin AP; Nukaga M; Nukaga Y; Hujer A; Bonomo RA; Knox JR Biochemistry; 2001 Feb; 40(6):1861-6. PubMed ID: 11327849 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]