BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 17631274)

  • 1. Dissolution of the inorganic phase of bone leading to release of calcium regulates osteoclast survival.
    Nielsen RH; Karsdal MA; Sørensen MG; Dziegiel MH; Henriksen K
    Biochem Biophys Res Commun; 2007 Sep; 360(4):834-9. PubMed ID: 17631274
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Degradation of the organic phase of bone by osteoclasts: a secondary role for lysosomal acidification.
    Henriksen K; Sørensen MG; Nielsen RH; Gram J; Schaller S; Dziegiel MH; Everts V; Bollerslev J; Karsdal MA
    J Bone Miner Res; 2006 Jan; 21(1):58-66. PubMed ID: 16355274
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of the bone phenotype in ClC-7-deficient mice.
    Neutzsky-Wulff AV; Karsdal MA; Henriksen K
    Calcif Tissue Int; 2008 Dec; 83(6):425-37. PubMed ID: 18958510
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Extracellular acidification enhances osteoclast survival through an NFAT-independent, protein kinase C-dependent pathway.
    Pereverzev A; Komarova SV; Korcok J; Armstrong S; Tremblay GB; Dixon SJ; Sims SM
    Bone; 2008 Jan; 42(1):150-61. PubMed ID: 17964236
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of acid flux in osteoclasts from patients harboring a G215R mutation in ClC-7.
    Henriksen K; Gram J; Neutzsky-Wulff AV; Jensen VK; Dziegiel MH; Bollerslev J; Karsdal MA
    Biochem Biophys Res Commun; 2009 Jan; 378(4):804-9. PubMed ID: 19070589
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Severe developmental bone phenotype in ClC-7 deficient mice.
    Neutzsky-Wulff AV; Sims NA; Supanchart C; Kornak U; Felsenberg D; Poulton IJ; Martin TJ; Karsdal MA; Henriksen K
    Dev Biol; 2010 Aug; 344(2):1001-10. PubMed ID: 20599900
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Diphyllin, a novel and naturally potent V-ATPase inhibitor, abrogates acidification of the osteoclastic resorption lacunae and bone resorption.
    Sørensen MG; Henriksen K; Neutzsky-Wulff AV; Dziegiel MH; Karsdal MA
    J Bone Miner Res; 2007 Oct; 22(10):1640-8. PubMed ID: 17576165
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Antithetic effects of ryanodine and ruthenium red on osteoclast-mediated bone resorption and intracellular calcium concentrations.
    Ritchie CK; Strei TA; Maercklein PB; Fitzpatrick LA
    J Cell Biochem; 1995 Oct; 59(2):281-9. PubMed ID: 8904321
    [TBL] [Abstract][Full Text] [Related]  

  • 9. VEGF enhancement of osteoclast survival and bone resorption involves VEGF receptor-2 signaling and beta3-integrin.
    Yang Q; McHugh KP; Patntirapong S; Gu X; Wunderlich L; Hauschka PV
    Matrix Biol; 2008 Sep; 27(7):589-99. PubMed ID: 18640270
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of cell culture time and bone matrix exposure on calmodulin content and ATP-dependent cell membrane acid transport in avian osteoclasts and macrophages.
    Williams JP; Dong SS; Whitaker CH; Jordan SE; Blair HC
    J Cell Physiol; 1996 Dec; 169(3):411-9. PubMed ID: 8952690
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Acidification of the osteoclastic resorption compartment provides insight into the coupling of bone formation to bone resorption.
    Karsdal MA; Henriksen K; Sørensen MG; Gram J; Schaller S; Dziegiel MH; Heegaard AM; Christophersen P; Martin TJ; Christiansen C; Bollerslev J
    Am J Pathol; 2005 Feb; 166(2):467-76. PubMed ID: 15681830
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bone remodeling and the osteoclast.
    Teitelbaum SL
    J Bone Miner Res; 1993 Dec; 8 Suppl 2():S523-5. PubMed ID: 8122522
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transcytosis of calcium from bone by osteoclast-like cells evidenced by direct visualization of calcium in cells.
    Yamaki M; Nakamura H; Takahashi N; Udagawa N; Ozawa H
    Arch Biochem Biophys; 2005 Aug; 440(1):10-7. PubMed ID: 15993377
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ion channels and transporters in osteoclasts.
    Supanchart C; Kornak U
    Arch Biochem Biophys; 2008 May; 473(2):161-5. PubMed ID: 18406337
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ion transporters involved in acidification of the resorption lacuna in osteoclasts.
    Henriksen K; Sørensen MG; Jensen VK; Dziegiel MH; Nosjean O; Karsdal MA
    Calcif Tissue Int; 2008 Sep; 83(3):230-42. PubMed ID: 18787885
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The role of chloride channels in osteoclasts: ClC-7 as a target for osteoporosis treatment.
    Schaller S; Henriksen K; Sørensen MG; Karsdal MA
    Drug News Perspect; 2005 Oct; 18(8):489-95. PubMed ID: 16391718
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Different calcium sensitivity in osteoclasts on glass and on bone and maintenance of cytoskeletal structures on bone in the presence of high extracellular calcium.
    Lakkakorpi PT; Lehenkari PP; Rautiala TJ; Väänänen HK
    J Cell Physiol; 1996 Sep; 168(3):668-77. PubMed ID: 8816921
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Osteoclast size heterogeneity in rat long bones is associated with differences in adhesive ligand specificity.
    Hu Y; Ek-Rylander B; Karlström E; Wendel M; Andersson G
    Exp Cell Res; 2008 Feb; 314(3):638-50. PubMed ID: 18086469
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The relationship between calcium accumulation in osteoclast mitochondrial granules and bone resorption.
    Kawahara I; Koide M; Tadokoro O; Udagawa N; Nakamura H; Takahashi N; Ozawa H
    Bone; 2009 Nov; 45(5):980-6. PubMed ID: 19631304
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Osteoclasts degrade bone and cartilage knee joint compartments through different resorption processes.
    Löfvall H; Newbould H; Karsdal MA; Dziegiel MH; Richter J; Henriksen K; Thudium CS
    Arthritis Res Ther; 2018 Apr; 20(1):67. PubMed ID: 29636095
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.