These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
197 related articles for article (PubMed ID: 17631274)
1. Dissolution of the inorganic phase of bone leading to release of calcium regulates osteoclast survival. Nielsen RH; Karsdal MA; Sørensen MG; Dziegiel MH; Henriksen K Biochem Biophys Res Commun; 2007 Sep; 360(4):834-9. PubMed ID: 17631274 [TBL] [Abstract][Full Text] [Related]
2. Degradation of the organic phase of bone by osteoclasts: a secondary role for lysosomal acidification. Henriksen K; Sørensen MG; Nielsen RH; Gram J; Schaller S; Dziegiel MH; Everts V; Bollerslev J; Karsdal MA J Bone Miner Res; 2006 Jan; 21(1):58-66. PubMed ID: 16355274 [TBL] [Abstract][Full Text] [Related]
3. Characterization of the bone phenotype in ClC-7-deficient mice. Neutzsky-Wulff AV; Karsdal MA; Henriksen K Calcif Tissue Int; 2008 Dec; 83(6):425-37. PubMed ID: 18958510 [TBL] [Abstract][Full Text] [Related]
4. Extracellular acidification enhances osteoclast survival through an NFAT-independent, protein kinase C-dependent pathway. Pereverzev A; Komarova SV; Korcok J; Armstrong S; Tremblay GB; Dixon SJ; Sims SM Bone; 2008 Jan; 42(1):150-61. PubMed ID: 17964236 [TBL] [Abstract][Full Text] [Related]
5. Characterization of acid flux in osteoclasts from patients harboring a G215R mutation in ClC-7. Henriksen K; Gram J; Neutzsky-Wulff AV; Jensen VK; Dziegiel MH; Bollerslev J; Karsdal MA Biochem Biophys Res Commun; 2009 Jan; 378(4):804-9. PubMed ID: 19070589 [TBL] [Abstract][Full Text] [Related]
6. Severe developmental bone phenotype in ClC-7 deficient mice. Neutzsky-Wulff AV; Sims NA; Supanchart C; Kornak U; Felsenberg D; Poulton IJ; Martin TJ; Karsdal MA; Henriksen K Dev Biol; 2010 Aug; 344(2):1001-10. PubMed ID: 20599900 [TBL] [Abstract][Full Text] [Related]
7. Diphyllin, a novel and naturally potent V-ATPase inhibitor, abrogates acidification of the osteoclastic resorption lacunae and bone resorption. Sørensen MG; Henriksen K; Neutzsky-Wulff AV; Dziegiel MH; Karsdal MA J Bone Miner Res; 2007 Oct; 22(10):1640-8. PubMed ID: 17576165 [TBL] [Abstract][Full Text] [Related]
8. Antithetic effects of ryanodine and ruthenium red on osteoclast-mediated bone resorption and intracellular calcium concentrations. Ritchie CK; Strei TA; Maercklein PB; Fitzpatrick LA J Cell Biochem; 1995 Oct; 59(2):281-9. PubMed ID: 8904321 [TBL] [Abstract][Full Text] [Related]
9. VEGF enhancement of osteoclast survival and bone resorption involves VEGF receptor-2 signaling and beta3-integrin. Yang Q; McHugh KP; Patntirapong S; Gu X; Wunderlich L; Hauschka PV Matrix Biol; 2008 Sep; 27(7):589-99. PubMed ID: 18640270 [TBL] [Abstract][Full Text] [Related]
10. Effects of cell culture time and bone matrix exposure on calmodulin content and ATP-dependent cell membrane acid transport in avian osteoclasts and macrophages. Williams JP; Dong SS; Whitaker CH; Jordan SE; Blair HC J Cell Physiol; 1996 Dec; 169(3):411-9. PubMed ID: 8952690 [TBL] [Abstract][Full Text] [Related]
11. Acidification of the osteoclastic resorption compartment provides insight into the coupling of bone formation to bone resorption. Karsdal MA; Henriksen K; Sørensen MG; Gram J; Schaller S; Dziegiel MH; Heegaard AM; Christophersen P; Martin TJ; Christiansen C; Bollerslev J Am J Pathol; 2005 Feb; 166(2):467-76. PubMed ID: 15681830 [TBL] [Abstract][Full Text] [Related]
12. Bone remodeling and the osteoclast. Teitelbaum SL J Bone Miner Res; 1993 Dec; 8 Suppl 2():S523-5. PubMed ID: 8122522 [TBL] [Abstract][Full Text] [Related]
13. Transcytosis of calcium from bone by osteoclast-like cells evidenced by direct visualization of calcium in cells. Yamaki M; Nakamura H; Takahashi N; Udagawa N; Ozawa H Arch Biochem Biophys; 2005 Aug; 440(1):10-7. PubMed ID: 15993377 [TBL] [Abstract][Full Text] [Related]
14. Ion channels and transporters in osteoclasts. Supanchart C; Kornak U Arch Biochem Biophys; 2008 May; 473(2):161-5. PubMed ID: 18406337 [TBL] [Abstract][Full Text] [Related]
15. Ion transporters involved in acidification of the resorption lacuna in osteoclasts. Henriksen K; Sørensen MG; Jensen VK; Dziegiel MH; Nosjean O; Karsdal MA Calcif Tissue Int; 2008 Sep; 83(3):230-42. PubMed ID: 18787885 [TBL] [Abstract][Full Text] [Related]
16. The role of chloride channels in osteoclasts: ClC-7 as a target for osteoporosis treatment. Schaller S; Henriksen K; Sørensen MG; Karsdal MA Drug News Perspect; 2005 Oct; 18(8):489-95. PubMed ID: 16391718 [TBL] [Abstract][Full Text] [Related]
17. Different calcium sensitivity in osteoclasts on glass and on bone and maintenance of cytoskeletal structures on bone in the presence of high extracellular calcium. Lakkakorpi PT; Lehenkari PP; Rautiala TJ; Väänänen HK J Cell Physiol; 1996 Sep; 168(3):668-77. PubMed ID: 8816921 [TBL] [Abstract][Full Text] [Related]
18. Osteoclast size heterogeneity in rat long bones is associated with differences in adhesive ligand specificity. Hu Y; Ek-Rylander B; Karlström E; Wendel M; Andersson G Exp Cell Res; 2008 Feb; 314(3):638-50. PubMed ID: 18086469 [TBL] [Abstract][Full Text] [Related]
19. The relationship between calcium accumulation in osteoclast mitochondrial granules and bone resorption. Kawahara I; Koide M; Tadokoro O; Udagawa N; Nakamura H; Takahashi N; Ozawa H Bone; 2009 Nov; 45(5):980-6. PubMed ID: 19631304 [TBL] [Abstract][Full Text] [Related]
20. Osteoclasts degrade bone and cartilage knee joint compartments through different resorption processes. Löfvall H; Newbould H; Karsdal MA; Dziegiel MH; Richter J; Henriksen K; Thudium CS Arthritis Res Ther; 2018 Apr; 20(1):67. PubMed ID: 29636095 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]