These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

247 related articles for article (PubMed ID: 17631541)

  • 1. New insights into the mechanism of Alzheimer amyloid-beta fibrillogenesis inhibition by N-methylated peptides.
    Soto P; Griffin MA; Shea JE
    Biophys J; 2007 Nov; 93(9):3015-25. PubMed ID: 17631541
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inhibition of beta-amyloid(40) fibrillogenesis and disassembly of beta-amyloid(40) fibrils by short beta-amyloid congeners containing N-methyl amino acids at alternate residues.
    Gordon DJ; Sciarretta KL; Meredith SC
    Biochemistry; 2001 Jul; 40(28):8237-45. PubMed ID: 11444969
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Targeting the early steps of Abeta16-22 protofibril disassembly by N-methylated inhibitors: a numerical study.
    Chebaro Y; Derreumaux P
    Proteins; 2009 May; 75(2):442-52. PubMed ID: 18837034
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Understanding amyloid fibril nucleation and aβ oligomer/drug interactions from computer simulations.
    Nguyen P; Derreumaux P
    Acc Chem Res; 2014 Feb; 47(2):603-11. PubMed ID: 24368046
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of water in protein aggregation and amyloid polymorphism.
    Thirumalai D; Reddy G; Straub JE
    Acc Chem Res; 2012 Jan; 45(1):83-92. PubMed ID: 21761818
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural insights into the co-aggregation of Aβ and tau amyloid core peptides: Revealing potential pathological heterooligomers by simulations.
    Li X; Chen Y; Yang Z; Zhang S; Wei G; Zhang L
    Int J Biol Macromol; 2024 Jan; 254(Pt 2):127841. PubMed ID: 37924907
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simulations on the dual effects of flavonoids as suppressors of Aβ42 fibrillogenesis and destabilizers of mature fibrils.
    Gargari SA; Barzegar A
    Sci Rep; 2020 Oct; 10(1):16636. PubMed ID: 33024142
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multi-strand β-sheet of Alzheimer Aβ(1-40) folds to β-strip helix: implication for protofilament formation.
    Hayward S; Kitao A
    J Biomol Struct Dyn; 2019 May; 37(8):2143-2153. PubMed ID: 30044203
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A new structural model of Aβ40 fibrils.
    Bertini I; Gonnelli L; Luchinat C; Mao J; Nesi A
    J Am Chem Soc; 2011 Oct; 133(40):16013-22. PubMed ID: 21882806
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular Dynamics Study on the Inhibition Mechanisms of Drugs CQ1-3 for Alzheimer Amyloid-β40 Aggregation Induced by Cu(2.).
    Dong M; Li H; Hu D; Zhao W; Zhu X; Ai H
    ACS Chem Neurosci; 2016 May; 7(5):599-614. PubMed ID: 26871000
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Alzheimer's beta-amyloid: insights into fibril formation and structure from Congo red binding.
    Inouye H; Kirschner DA
    Subcell Biochem; 2005; 38():203-24. PubMed ID: 15709480
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Conformational stability of fibrillar amyloid-beta oligomers via protofilament pair formation - a systematic computational study.
    Kahler A; Sticht H; Horn AH
    PLoS One; 2013; 8(7):e70521. PubMed ID: 23936224
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A molecular model of Alzheimer amyloid beta-peptide fibril formation.
    Tjernberg LO; Callaway DJ; Tjernberg A; Hahne S; Lilliehöök C; Terenius L; Thyberg J; Nordstedt C
    J Biol Chem; 1999 Apr; 274(18):12619-25. PubMed ID: 10212241
    [TBL] [Abstract][Full Text] [Related]  

  • 14. ATP Controls the Aggregation of Aβ
    Pal S; Paul S
    J Phys Chem B; 2020 Jan; 124(1):210-223. PubMed ID: 31830415
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dual effects of familial Alzheimer's disease mutations (D7H, D7N, and H6R) on amyloid β peptide: correlation dynamics and zinc binding.
    Xu L; Chen Y; Wang X
    Proteins; 2014 Dec; 82(12):3286-97. PubMed ID: 25137638
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Oligomerization of amyloid Abeta16-22 peptides using hydrogen bonds and hydrophobicity forces.
    Favrin G; Irbäck A; Mohanty S
    Biophys J; 2004 Dec; 87(6):3657-64. PubMed ID: 15377534
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of Aβ-derived peptide fragments on fibrillogenesis of Aβ.
    Abedin F; Kandel N; Tatulian SA
    Sci Rep; 2021 Sep; 11(1):19262. PubMed ID: 34584131
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular insights into the surface-catalyzed secondary nucleation of amyloid-β
    Bunce SJ; Wang Y; Stewart KL; Ashcroft AE; Radford SE; Hall CK; Wilson AJ
    Sci Adv; 2019 Jun; 5(6):eaav8216. PubMed ID: 31245536
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanism of cholesterol-assisted oligomeric channel formation by a short Alzheimer β-amyloid peptide.
    Di Scala C; Troadec JD; Lelièvre C; Garmy N; Fantini J; Chahinian H
    J Neurochem; 2014 Jan; 128(1):186-95. PubMed ID: 23919567
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Laminin inhibition of beta-amyloid protein (Abeta) fibrillogenesis and identification of an Abeta binding site localized to the globular domain repeats on the laminin a chain.
    Castillo GM; Lukito W; Peskind E; Raskind M; Kirschner DA; Yee AG; Snow AD
    J Neurosci Res; 2000 Nov; 62(3):451-62. PubMed ID: 11054814
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.