These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 17631676)

  • 1. Osteoblast interactions with various hydroxyapatite based biomaterials consolidated using a spark plasma sintering technique.
    Xu JL; Khor KA; Lu YW; Chen WN; Kumar R
    J Biomed Mater Res B Appl Biomater; 2008 Jan; 84(1):224-30. PubMed ID: 17631676
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effect of fluoride contents in fluoridated hydroxyapatite on osteoblast behavior.
    Qu H; Wei M
    Acta Biomater; 2006 Jan; 2(1):113-9. PubMed ID: 16701866
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vitro bioactivity and cytocompatibility properties of spark plasma sintered HA-Ti composites.
    Kumar A; Dhara S; Biswas K; Basu B
    J Biomed Mater Res B Appl Biomater; 2013 Feb; 101(2):223-36. PubMed ID: 23281190
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chemical analysis of silica doped hydroxyapatite biomaterials consolidated by a spark plasma sintering method.
    Xu JL; Khor KA
    J Inorg Biochem; 2007 Feb; 101(2):187-95. PubMed ID: 17095092
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vitro biological evaluation of beta-TCP/HDPE--A novel orthopedic composite: a survey using human osteoblast and fibroblast bone cells.
    Homaeigohar SSh; Shokrgozar MA; Khavandi A; Sadi AY
    J Biomed Mater Res A; 2008 Feb; 84(2):491-9. PubMed ID: 17618499
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nanocrystalline Zn
    Alshemary AZ; Pazarçeviren EA; Dalgic AD; Tezcaner A; Keskin D; Evis Z
    Mater Sci Eng C Mater Biol Appl; 2019 Nov; 104():109884. PubMed ID: 31500005
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biocompatibility of dense hydroxyapatite prepared using an SPS process.
    Nakahira A; Tamai M; Aritani H; Nakamura S; Yamashita K
    J Biomed Mater Res; 2002 Dec; 62(4):550-7. PubMed ID: 12221703
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In vitro biocompatibility analysis of novel nano-biphasic calcium phosphate scaffolds in different composition ratios.
    Ebrahimi M; Pripatnanont P; Suttapreyasri S; Monmaturapoj N
    J Biomed Mater Res B Appl Biomater; 2014 Jan; 102(1):52-61. PubMed ID: 23847019
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthesis of Si, Mg substituted hydroxyapatites and their sintering behaviors.
    Kim SR; Lee JH; Kim YT; Riu DH; Jung SJ; Lee YJ; Chung SC; Kim YH
    Biomaterials; 2003 Apr; 24(8):1389-98. PubMed ID: 12527280
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sr-containing hydroxyapatite: morphologies of HA crystals and bioactivity on osteoblast cells.
    Aina V; Bergandi L; Lusvardi G; Malavasi G; Imrie FE; Gibson IR; Cerrato G; Ghigo D
    Mater Sci Eng C Mater Biol Appl; 2013 Apr; 33(3):1132-42. PubMed ID: 23827552
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Osteoblast precursor cell activity on HA surfaces of different treatments.
    Ong JL; Hoppe CA; Cardenas HL; Cavin R; Carnes DL; Sogal A; Raikar GN
    J Biomed Mater Res; 1998 Feb; 39(2):176-83. PubMed ID: 9457545
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spark plasma sintering synthesis of porous nanocrystalline titanium alloys for biomedical applications.
    Nicula R; Lüthen F; Stir M; Nebe B; Burkel E
    Biomol Eng; 2007 Nov; 24(5):564-7. PubMed ID: 17869173
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In vitro effects on MG63 osteoblast-like cells following contact with two roughness-differing fluorohydroxyapatite-coated titanium alloys.
    Montanaro L; Arciola CR; Campoccia D; Cervellati M
    Biomaterials; 2002 Sep; 23(17):3651-9. PubMed ID: 12109691
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of the nanostructure of porous alumina on growth behavior of MG63 osteoblast-like cells.
    Song Y; Ju Y; Morita Y; Song G
    J Biosci Bioeng; 2013 Oct; 116(4):509-15. PubMed ID: 23643619
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vitro response of hFOB cells to pamidronate modified sodium silicate coated cellulose scaffolds.
    Ponader S; Brandt H; Vairaktaris E; von Wilmowsky C; Nkenke E; Schlegel KA; Neukam FW; Holst S; Müller FA; Greil P
    Colloids Surf B Biointerfaces; 2008 Jul; 64(2):275-83. PubMed ID: 18346882
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of transforming growth factor-beta on osteoblast cells cultured on 3 different hydroxyapatite surfaces.
    Ong JL; Carnes DL; Sogal A
    Int J Oral Maxillofac Implants; 1999; 14(2):217-25. PubMed ID: 10212538
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization and osteoblast-like cell compatibility of porous scaffolds: bovine hydroxyapatite and novel hydroxyapatite artificial bone.
    Gao Y; Cao WL; Wang XY; Gong YD; Tian JM; Zhao NM; Zhang XF
    J Mater Sci Mater Med; 2006 Sep; 17(9):815-23. PubMed ID: 16932863
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Differentiation of osteoblast and osteoclast precursors on pure and silicon-substituted synthesized hydroxyapatites.
    Lehmann G; Cacciotti I; Palmero P; Montanaro L; Bianco A; Campagnolo L; Camaioni A
    Biomed Mater; 2012 Oct; 7(5):055001. PubMed ID: 22781924
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Osteoblast response to porous titanium surfaces coated with zinc-substituted hydroxyapatite.
    Yang F; Dong WJ; He FM; Wang XX; Zhao SF; Yang GL
    Oral Surg Oral Med Oral Pathol Oral Radiol; 2012 Mar; 113(3):313-8. PubMed ID: 22676822
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Strontium-substituted hydroxyapatite coatings synthesized by pulsed-laser deposition: in vitro osteoblast and osteoclast response.
    Capuccini C; Torricelli P; Sima F; Boanini E; Ristoscu C; Bracci B; Socol G; Fini M; Mihailescu IN; Bigi A
    Acta Biomater; 2008 Nov; 4(6):1885-93. PubMed ID: 18554996
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.