These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
177 related articles for article (PubMed ID: 17631934)
1. Iron chelators ICL670 and 311 inhibit HIV-1 transcription. Debebe Z; Ammosova T; Jerebtsova M; Kurantsin-Mills J; Niu X; Charles S; Richardson DR; Ray PE; Gordeuk VR; Nekhai S Virology; 2007 Oct; 367(2):324-33. PubMed ID: 17631934 [TBL] [Abstract][Full Text] [Related]
2. Iron chelators of the di-2-pyridylketone thiosemicarbazone and 2-benzoylpyridine thiosemicarbazone series inhibit HIV-1 transcription: identification of novel cellular targets--iron, cyclin-dependent kinase (CDK) 2, and CDK9. Debebe Z; Ammosova T; Breuer D; Lovejoy DB; Kalinowski DS; Kumar K; Jerebtsova M; Ray P; Kashanchi F; Gordeuk VR; Richardson DR; Nekhai S Mol Pharmacol; 2011 Jan; 79(1):185-96. PubMed ID: 20956357 [TBL] [Abstract][Full Text] [Related]
3. Phenyl-1-Pyridin-2yl-ethanone-based iron chelators increase IκB-α expression, modulate CDK2 and CDK9 activities, and inhibit HIV-1 transcription. Kumari N; Iordanskiy S; Kovalskyy D; Breuer D; Niu X; Lin X; Xu M; Gavrilenko K; Kashanchi F; Dhawan S; Nekhai S Antimicrob Agents Chemother; 2014 Nov; 58(11):6558-71. PubMed ID: 25155598 [TBL] [Abstract][Full Text] [Related]
4. CDK2 regulates HIV-1 transcription by phosphorylation of CDK9 on serine 90. Breuer D; Kotelkin A; Ammosova T; Kumari N; Ivanov A; Ilatovskiy AV; Beullens M; Roane PR; Bollen M; Petukhov MG; Kashanchi F; Nekhai S Retrovirology; 2012 Nov; 9():94. PubMed ID: 23140174 [TBL] [Abstract][Full Text] [Related]
5. Development of tridentate iron chelators: from desferrithiocin to ICL670. Nick H; Acklin P; Lattmann R; Buehlmayer P; Hauffe S; Schupp J; Alberti D Curr Med Chem; 2003 Jun; 10(12):1065-76. PubMed ID: 12678677 [TBL] [Abstract][Full Text] [Related]
6. Protein Phosphatase-1 -targeted Small Molecules, Iron Chelators and Curcumin Analogs as HIV-1 Antivirals. Lin X; Ammosova T; Kumari N; Nekhai S Curr Pharm Des; 2017; 23(28):4122-4132. PubMed ID: 28677499 [TBL] [Abstract][Full Text] [Related]
8. Regulation of HIV-1 transcription at 3% versus 21% oxygen concentration. Charles S; Ammosova T; Cardenas J; Foster A; Rotimi J; Jerebtsova M; Ayodeji AA; Niu X; Ray PE; Gordeuk VR; Kashanchi F; Nekhai S J Cell Physiol; 2009 Nov; 221(2):469-79. PubMed ID: 19626680 [TBL] [Abstract][Full Text] [Related]
9. The potential of iron chelators of the pyridoxal isonicotinoyl hydrazone class as effective antiproliferative agents III: the effect of the ligands on molecular targets involved in proliferation. Darnell G; Richardson DR Blood; 1999 Jul; 94(2):781-92. PubMed ID: 10397746 [TBL] [Abstract][Full Text] [Related]
10. In vitro antimalarial activity of ICL670: a further proof of the correlation between inhibition of β-hematin formation and of peroxidative degradation of hemin. Sonnet P; Mullié C Exp Parasitol; 2011 May; 128(1):26-31. PubMed ID: 21295029 [TBL] [Abstract][Full Text] [Related]
11. Phosphorylation of HIV-1 Tat by CDK2 in HIV-1 transcription. Ammosova T; Berro R; Jerebtsova M; Jackson A; Charles S; Klase Z; Southerland W; Gordeuk VR; Kashanchi F; Nekhai S Retrovirology; 2006 Nov; 3():78. PubMed ID: 17083724 [TBL] [Abstract][Full Text] [Related]
12. Antiproliferative effect on HepaRG cell cultures of new calix[4]arenes. Rouge P; Pires VS; Gaboriau F; Dassonville-Klimpt A; Guillon J; Nascimento SD; Leger JM; Lescoat G; Sonnet P J Enzyme Inhib Med Chem; 2010 Apr; 25(2):216-27. PubMed ID: 19883235 [TBL] [Abstract][Full Text] [Related]
13. Potent iron chelators increase the mRNA levels of the universal cyclin-dependent kinase inhibitor p21(CIP1/WAF1), but paradoxically inhibit its translation: a potential mechanism of cell cycle dysregulation. Le NT; Richardson DR Carcinogenesis; 2003 Jun; 24(6):1045-58. PubMed ID: 12807743 [TBL] [Abstract][Full Text] [Related]
14. Development of novel aroylhydrazone ligands for iron chelation therapy: 2-pyridylcarboxaldehyde isonicotinoyl hydrazone analogs. Becker E; Richardson DR J Lab Clin Med; 1999 Nov; 134(5):510-21. PubMed ID: 10560945 [TBL] [Abstract][Full Text] [Related]
15. The potential of iron chelators of the pyridoxal isonicotinoyl hydrazone class as effective antiproliferative agents, IV: The mechanisms involved in inhibiting cell-cycle progression. Gao J; Richardson DR Blood; 2001 Aug; 98(3):842-50. PubMed ID: 11468187 [TBL] [Abstract][Full Text] [Related]
16. Chelation of thallium by combining deferasirox and desferrioxamine in rats. Saljooghi AS; Babaie M; Mendi FD; Zahmati M; Saljooghi ZS Toxicol Ind Health; 2016 Jan; 32(1):83-8. PubMed ID: 24021432 [TBL] [Abstract][Full Text] [Related]
17. Dephosphorylation of CDK9 by protein phosphatase 2A and protein phosphatase-1 in Tat-activated HIV-1 transcription. Ammosova T; Washington K; Debebe Z; Brady J; Nekhai S Retrovirology; 2005 Jul; 2():47. PubMed ID: 16048649 [TBL] [Abstract][Full Text] [Related]
18. Antiproliferative and apoptotic effects in rat and human hepatoma cell cultures of the orally active iron chelator ICL670 compared to CP20: a possible relationship with polyamine metabolism. Lescoat G; Chantrel-Groussard K; Pasdeloup N; Nick H; Brissot P; Gaboriau F Cell Prolif; 2007 Oct; 40(5):755-67. PubMed ID: 17877614 [TBL] [Abstract][Full Text] [Related]
19. Examination of the antiproliferative activity of iron chelators: multiple cellular targets and the different mechanism of action of triapine compared with desferrioxamine and the potent pyridoxal isonicotinoyl hydrazone analogue 311. Chaston TB; Lovejoy DB; Watts RN; Richardson DR Clin Cancer Res; 2003 Jan; 9(1):402-14. PubMed ID: 12538494 [TBL] [Abstract][Full Text] [Related]