BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1326 related articles for article (PubMed ID: 17632057)

  • 21. A novel role for the Pol I transcription factor UBTF in maintaining genome stability through the regulation of highly transcribed Pol II genes.
    Sanij E; Diesch J; Lesmana A; Poortinga G; Hein N; Lidgerwood G; Cameron DP; Ellul J; Goodall GJ; Wong LH; Dhillon AS; Hamdane N; Rothblum LI; Pearson RB; Haviv I; Moss T; Hannan RD
    Genome Res; 2015 Feb; 25(2):201-12. PubMed ID: 25452314
    [TBL] [Abstract][Full Text] [Related]  

  • 22. High-resolution mapping of chromatin packaging in mouse embryonic stem cells and sperm.
    Carone BR; Hung JH; Hainer SJ; Chou MT; Carone DM; Weng Z; Fazzio TG; Rando OJ
    Dev Cell; 2014 Jul; 30(1):11-22. PubMed ID: 24998598
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Pause locally, splice globally.
    Carrillo Oesterreich F; Bieberstein N; Neugebauer KM
    Trends Cell Biol; 2011 Jun; 21(6):328-35. PubMed ID: 21530266
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Transcription. Unlocking the gates to gene expression.
    Fry CJ; Peterson CL
    Science; 2002 Mar; 295(5561):1847-8. PubMed ID: 11884741
    [No Abstract]   [Full Text] [Related]  

  • 25. The RNA polymerase II transcriptional machinery and its epigenetic context.
    Barrero MJ; Malik S
    Subcell Biochem; 2013; 61():237-59. PubMed ID: 23150254
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Prepatterning of developmental gene expression by modified histones before zygotic genome activation.
    Lindeman LC; Andersen IS; Reiner AH; Li N; Aanes H; Østrup O; Winata C; Mathavan S; Müller F; Aleström P; Collas P
    Dev Cell; 2011 Dec; 21(6):993-1004. PubMed ID: 22137762
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Transcriptional regulation by histone modifications: towards a theory of chromatin re-organization during stem cell differentiation.
    Binder H; Steiner L; Przybilla J; Rohlf T; Prohaska S; Galle J
    Phys Biol; 2013 Apr; 10(2):026006. PubMed ID: 23481318
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Ioxynil and tetrabromobisphenol A suppress thyroid-hormone-induced activation of transcriptional elongation mediated by histone modifications and RNA polymerase II phosphorylation.
    Otsuka S; Ishihara A; Yamauchi K
    Toxicol Sci; 2014 Apr; 138(2):290-9. PubMed ID: 24449421
    [TBL] [Abstract][Full Text] [Related]  

  • 29. RNA polymerase II binding patterns reveal genomic regions involved in microRNA gene regulation.
    Wang G; Wang Y; Shen C; Huang YW; Huang K; Huang TH; Nephew KP; Li L; Liu Y
    PLoS One; 2010 Nov; 5(11):e13798. PubMed ID: 21072189
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The beta -globin locus control region (LCR) functions primarily by enhancing the transition from transcription initiation to elongation.
    Sawado T; Halow J; Bender MA; Groudine M
    Genes Dev; 2003 Apr; 17(8):1009-18. PubMed ID: 12672691
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Nucleosomes inhibit the initiation of transcription but allow chain elongation with the displacement of histones.
    Lorch Y; LaPointe JW; Kornberg RD
    Cell; 1987 Apr; 49(2):203-10. PubMed ID: 3568125
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Genome-wide mapping and analysis of active promoters in mouse embryonic stem cells and adult organs.
    Barrera LO; Li Z; Smith AD; Arden KC; Cavenee WK; Zhang MQ; Green RD; Ren B
    Genome Res; 2008 Jan; 18(1):46-59. PubMed ID: 18042645
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Promoter DNA methylation patterns of differentiated cells are largely programmed at the progenitor stage.
    Sørensen AL; Jacobsen BM; Reiner AH; Andersen IS; Collas P
    Mol Biol Cell; 2010 Jun; 21(12):2066-77. PubMed ID: 20410135
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Prediction of RNA Polymerase II recruitment, elongation and stalling from histone modification data.
    Chen Y; Jørgensen M; Kolde R; Zhao X; Parker B; Valen E; Wen J; Sandelin A
    BMC Genomics; 2011 Nov; 12():544. PubMed ID: 22047616
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A genomic analysis of RNA polymerase II modification and chromatin architecture related to 3' end RNA polyadenylation.
    Lian Z; Karpikov A; Lian J; Mahajan MC; Hartman S; Gerstein M; Snyder M; Weissman SM
    Genome Res; 2008 Aug; 18(8):1224-37. PubMed ID: 18487515
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Core promoter structure and genomic context reflect histone 3 lysine 9 acetylation patterns.
    Kratz A; Arner E; Saito R; Kubosaki A; Kawai J; Suzuki H; Carninci P; Arakawa T; Tomita M; Hayashizaki Y; Daub CO
    BMC Genomics; 2010 Apr; 11():257. PubMed ID: 20409305
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Intragenic DNA methylation prevents spurious transcription initiation.
    Neri F; Rapelli S; Krepelova A; Incarnato D; Parlato C; Basile G; Maldotti M; Anselmi F; Oliviero S
    Nature; 2017 Mar; 543(7643):72-77. PubMed ID: 28225755
    [TBL] [Abstract][Full Text] [Related]  

  • 38. reChIP-seq reveals widespread bivalency of H3K4me3 and H3K27me3 in CD4(+) memory T cells.
    Kinkley S; Helmuth J; Polansky JK; Dunkel I; Gasparoni G; Fröhler S; Chen W; Walter J; Hamann A; Chung HR
    Nat Commun; 2016 Aug; 7():12514. PubMed ID: 27530917
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The great repression: chromatin and cryptic transcription.
    Hennig BP; Fischer T
    Transcription; 2013; 4(3):97-101. PubMed ID: 23665541
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Distinctive chromatin in human sperm packages genes for embryo development.
    Hammoud SS; Nix DA; Zhang H; Purwar J; Carrell DT; Cairns BR
    Nature; 2009 Jul; 460(7254):473-8. PubMed ID: 19525931
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 67.