These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 17632110)

  • 1. Volume effects on fatigue life of equine cortical bone.
    Bigley RF; Gibeling JC; Stover SM; Hazelwood SJ; Fyhrie DP; Martin RB
    J Biomech; 2007; 40(16):3548-54. PubMed ID: 17632110
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Volume effects on yield strength of equine cortical bone.
    Bigley RF; Gibeling JC; Stover SM; Hazelwood SJ; Fyhrie DP; Martin RB
    J Mech Behav Biomed Mater; 2008 Oct; 1(4):295-302. PubMed ID: 19627794
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Osteon pullout in the equine third metacarpal bone: effects of ex vivo fatigue.
    Hiller LP; Stover SM; Gibson VA; Gibeling JC; Prater CS; Hazelwood SJ; Yeh OC; Martin RB
    J Orthop Res; 2003 May; 21(3):481-8. PubMed ID: 12706021
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fatigue of bone and bones: an analysis based on stressed volume.
    Taylor D
    J Orthop Res; 1998 Mar; 16(2):163-9. PubMed ID: 9621890
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Osteonal effects on elastic modulus and fatigue life in equine bone.
    Gibson VA; Stover SM; Gibeling JC; Hazelwood SJ; Martin RB
    J Biomech; 2006; 39(2):217-25. PubMed ID: 16321623
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In vitro fatigue behavior of the equine third metacarpus: remodeling and microcrack damage analysis.
    Martin RB; Stover SM; Gibson VA; Gibeling JC; Griffin LV
    J Orthop Res; 1996 Sep; 14(5):794-801. PubMed ID: 8893774
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The dependence between the strength and stiffness of cancellous and cortical bone tissue for tension and compression: extension of a unifying principle.
    Yeni YN; Dong XN; Fyhrie DP; Les CM
    Biomed Mater Eng; 2004; 14(3):303-10. PubMed ID: 15299242
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fracture toughness and fatigue crack propagation rate of short fiber reinforced epoxy composites for analogue cortical bone.
    Chong AC; Miller F; Buxton M; Friis EA
    J Biomech Eng; 2007 Aug; 129(4):487-93. PubMed ID: 17655469
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Compressive fatigue life of subchondral bone of the metacarpal condyle in thoroughbred racehorses.
    Martig S; Lee PV; Anderson GA; Whitton RC
    Bone; 2013 Dec; 57(2):392-8. PubMed ID: 24063945
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Response of the osteocyte syncytium adjacent to and distant from linear microcracks during adaptation to cyclic fatigue loading.
    Colopy SA; Benz-Dean J; Barrett JG; Sample SJ; Lu Y; Danova NA; Kalscheur VL; Vanderby R; Markel MD; Muir P
    Bone; 2004 Oct; 35(4):881-91. PubMed ID: 15454095
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fatigue behavior of the equine third metacarpus: mechanical property analysis.
    Gibson VA; Stover SM; Martin RB; Gibeling JC; Willits NH; Gustafson MB; Griffin LV
    J Orthop Res; 1995 Nov; 13(6):861-8. PubMed ID: 8544022
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Scaling effects in the fatigue strength of bones from different animals.
    Taylor D
    J Theor Biol; 2000 Sep; 206(2):299-306. PubMed ID: 10966766
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Model of flexural fatigue damage accumulation for cortical bone.
    Griffin LV; Gibeling JC; Martin RB; Gibson VA; Stover SM
    J Orthop Res; 1997 Jul; 15(4):607-14. PubMed ID: 9379272
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Do microcracks decrease or increase fatigue resistance in cortical bone?
    Sobelman OS; Gibeling JC; Stover SM; Hazelwood SJ; Yeh OC; Shelton DR; Martin RB
    J Biomech; 2004 Sep; 37(9):1295-303. PubMed ID: 15275836
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bone formation after damaging in vivo fatigue loading results in recovery of whole-bone monotonic strength and increased fatigue life.
    Silva MJ; Touhey DC
    J Orthop Res; 2007 Feb; 25(2):252-61. PubMed ID: 17106875
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The influence of collagen fiber orientation and other histocompositional characteristics on the mechanical properties of equine cortical bone.
    Skedros JG; Dayton MR; Sybrowsky CL; Bloebaum RD; Bachus KN
    J Exp Biol; 2006 Aug; 209(Pt 15):3025-42. PubMed ID: 16857886
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fatigue of cortical bone under combined axial-torsional loading.
    Vashishth D; Tanner KE; Bonfield W
    J Orthop Res; 2001 May; 19(3):414-20. PubMed ID: 11398854
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A comparison of fatigue failure responses of old versus middle-aged lumbar motion segments in simulated flexed lifting.
    Gallagher S; Marras WS; Litsky AS; Burr D; Landoll J; Matkovic V
    Spine (Phila Pa 1976); 2007 Aug; 32(17):1832-9. PubMed ID: 17762290
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fatigue failure of as-received and retrieved NiTi orthodontic archwires.
    Bourauel C; Scharold W; Jäger A; Eliades T
    Dent Mater; 2008 Aug; 24(8):1095-101. PubMed ID: 18289660
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The prediction of stress fractures using a 'stressed volume' concept.
    Taylor D; Kuiper JH
    J Orthop Res; 2001 Sep; 19(5):919-26. PubMed ID: 11562142
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.