These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
191 related articles for article (PubMed ID: 17632213)
1. Comparison of self-organizing maps classification approach with cluster and principal components analysis for large environmental data sets. Astel A; Tsakovski S; Barbieri P; Simeonov V Water Res; 2007 Nov; 41(19):4566-78. PubMed ID: 17632213 [TBL] [Abstract][Full Text] [Related]
2. Seasonal and spatial variability of (210)Po, (238)U and (239+240)Pu levels in the river catchment area assessed by application of neural-network based classification. Skwarzec B; Kabat K; Astel A J Environ Radioact; 2009 Feb; 100(2):167-75. PubMed ID: 19091446 [TBL] [Abstract][Full Text] [Related]
3. Chemometric application in classification and assessment of monitoring locations of an urban river system. Kannel PR; Lee S; Kanel SR; Khan SP Anal Chim Acta; 2007 Jan; 582(2):390-9. PubMed ID: 17386518 [TBL] [Abstract][Full Text] [Related]
4. Multivariate statistical techniques for the evaluation of spatial and temporal variations in water quality of Gomti River (India)--a case study. Singh KP; Malik A; Mohan D; Sinha S Water Res; 2004 Nov; 38(18):3980-92. PubMed ID: 15380988 [TBL] [Abstract][Full Text] [Related]
5. Evaluation of spatial and temporal variation in water quality by pattern recognition techniques: A case study on Jajrood River (Tehran, Iran). Razmkhah H; Abrishamchi A; Torkian A J Environ Manage; 2010; 91(4):852-60. PubMed ID: 20056527 [TBL] [Abstract][Full Text] [Related]
6. Application of chemometrics in river water classification. Kowalkowski T; Zbytniewski R; Szpejna J; Buszewski B Water Res; 2006 Feb; 40(4):744-52. PubMed ID: 16442142 [TBL] [Abstract][Full Text] [Related]
7. An integrated SOM-based multivariate approach for spatio-temporal patterns identification and source apportionment of pollution in complex river network. Yang Y; Wang C; Guo H; Sheng H; Zhou F Environ Pollut; 2012 Sep; 168():71-9. PubMed ID: 22595762 [TBL] [Abstract][Full Text] [Related]
8. Assessment of water quality of polluted lake using multivariate statistical techniques: a case study. Kazi TG; Arain MB; Jamali MK; Jalbani N; Afridi HI; Sarfraz RA; Baig JA; Shah AQ Ecotoxicol Environ Saf; 2009 Feb; 72(2):301-9. PubMed ID: 18423587 [TBL] [Abstract][Full Text] [Related]
9. Chemometrical exploration of the wet precipitation chemistry from the Austrian Monitoring Network (1988-1999). Stanimirova I; Daszykowski M; Massart DL; Questier F; Simeonov V; Puxbaum H J Environ Manage; 2005 Mar; 74(4):349-63. PubMed ID: 15737459 [TBL] [Abstract][Full Text] [Related]
10. Water quality evaluation through application of chemometrics for Godavari river at Rajahmundry. Krishna MP; Moses GS; Krishna KV J Environ Sci Eng; 2009 Jan; 51(1):17-26. PubMed ID: 21114149 [TBL] [Abstract][Full Text] [Related]
11. Characterization of spatial patterns in river water quality using chemometric pattern recognition techniques. Gazzaz NM; Yusoff MK; Ramli MF; Aris AZ; Juahir H Mar Pollut Bull; 2012 Apr; 64(4):688-98. PubMed ID: 22330076 [TBL] [Abstract][Full Text] [Related]
12. Temporal characterisation of river waters in urban and semi-urban areas using physico-chemical parameters and chemometric methods. Felipe-Sotelo M; Andrade JM; Carlosena A; Tauler R Anal Chim Acta; 2007 Jan; 583(1):128-37. PubMed ID: 17386537 [TBL] [Abstract][Full Text] [Related]
13. Assessment of water quality using chemometric tools: a case study of river Cooum, South India. Giridharan L; Venugopal T; Jayaprakash M Arch Environ Contam Toxicol; 2009 May; 56(4):654-69. PubMed ID: 19301065 [TBL] [Abstract][Full Text] [Related]
14. Improving cluster visualization in self-organizing maps: application in gene expression data analysis. Fernandez EA; Balzarini M Comput Biol Med; 2007 Dec; 37(12):1677-89. PubMed ID: 17544390 [TBL] [Abstract][Full Text] [Related]
15. Land use effects in groundwater composition of an alluvial aquifer (Trussu River, Brazil) by multivariate techniques. de Andrade EM; Palácio HA; Souza IH; de Oliveira Leão RA; Guerreiro MJ Environ Res; 2008 Feb; 106(2):170-7. PubMed ID: 18062960 [TBL] [Abstract][Full Text] [Related]
16. Multivariate statistical characterization of water quality in Lake Lanier, Georgia, USA. Zeng X; Rasmussen TC J Environ Qual; 2005; 34(6):1980-91. PubMed ID: 16221817 [TBL] [Abstract][Full Text] [Related]
17. Design of on-line river water quality monitoring systems using the entropy theory: a case study. Karamouz M; Nokhandan AK; Kerachian R; Maksimovic C Environ Monit Assess; 2009 Aug; 155(1-4):63-81. PubMed ID: 18663591 [TBL] [Abstract][Full Text] [Related]
18. Environmetric data interpretation to assess the water quality of Maritsa River catchment. Papazova P; Simeonova P J Environ Sci Health A Tox Hazard Subst Environ Eng; 2013; 48(8):963-72. PubMed ID: 23485248 [TBL] [Abstract][Full Text] [Related]
19. River system in Japan from a landscape ecological aspect. Nakagoshi N; Inoue M J Environ Sci (China); 2003 Mar; 15(2):160-6. PubMed ID: 12765256 [TBL] [Abstract][Full Text] [Related]
20. A long-term, multitrophic level study to assess pulp and paper mill effluent effects on aquatic communities in four US receiving waters: characteristics of the study streams, sample sites, mills, and mill effluents. Hall TJ; Ragsdale RL; Arthurs WJ; Ikoma J; Borton DL; Cook DL Integr Environ Assess Manag; 2009 Apr; 5(2):199-218. PubMed ID: 19063588 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]