These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
792 related articles for article (PubMed ID: 17633035)
1. Measurement of CO2 exchange between Boreal forest and the atmosphere. Black TA; Gaumont-Guay D; Jassal RS; Amiro BD; Jarvis PG; Gower ST; Kelliher FM; Dunn A; Wofsy SC SEB Exp Biol Ser; 2005; ():151-85. PubMed ID: 17633035 [TBL] [Abstract][Full Text] [Related]
2. Fractional contributions by autotrophic and heterotrophic respiration to soil-surface CO2 efflux in Boreal forests. Högberg P; Nordgren A; Högberg MN; Ottosson-Löfvenius M; Bhupinderpal-Singh ; Olsson P; Linder S SEB Exp Biol Ser; 2005; ():251-67. PubMed ID: 17633039 [TBL] [Abstract][Full Text] [Related]
3. Changes in net ecosystem productivity of boreal black spruce stands in response to changes in temperature at diurnal and seasonal time scales. Grant RF; Margolis HA; Barr AG; Black TA; Dunn AL; Bernier PY; Bergeron O Tree Physiol; 2009 Jan; 29(1):1-17. PubMed ID: 19203928 [TBL] [Abstract][Full Text] [Related]
4. Fire as the dominant driver of central Canadian boreal forest carbon balance. Bond-Lamberty B; Peckham SD; Ahl DE; Gower ST Nature; 2007 Nov; 450(7166):89-92. PubMed ID: 17972883 [TBL] [Abstract][Full Text] [Related]
5. The potential for rising CO2 to account for the observed uptake of carbon by tropical, temperate, and boreal forest biomes. Ciais P; Janssens I; Shvidenko A; Wirth C; Malhi Y; Grace J; Schulze ED; Heimann M; Phillips O; Dolman AJ SEB Exp Biol Ser; 2005; ():109-49. PubMed ID: 17633034 [TBL] [Abstract][Full Text] [Related]
6. Simulating effects of fire disturbance and climate change on boreal forest productivity and evapotranspiration. Kang S; Kimball JS; Running SW Sci Total Environ; 2006 Jun; 362(1-3):85-102. PubMed ID: 16364407 [TBL] [Abstract][Full Text] [Related]
7. Influence of spring phenology on seasonal and annual carbon balance in two contrasting New England forests. Richardson AD; Hollinger DY; Dail DB; Lee JT; Munger JW; O'keefe J Tree Physiol; 2009 Mar; 29(3):321-31. PubMed ID: 19203967 [TBL] [Abstract][Full Text] [Related]
8. Impacts of elevated atmospheric CO(2) on forest trees and forest ecosystems: knowledge gaps. Karnosky DF Environ Int; 2003 Jun; 29(2-3):161-9. PubMed ID: 12676204 [TBL] [Abstract][Full Text] [Related]
9. Future carbon balance of China's forests under climate change and increasing CO2. Ju WM; Chen JM; Harvey D; Wang S J Environ Manage; 2007 Nov; 85(3):538-62. PubMed ID: 17187919 [TBL] [Abstract][Full Text] [Related]
10. Seasonality of temperate forest photosynthesis and daytime respiration. Wehr R; Munger JW; McManus JB; Nelson DD; Zahniser MS; Davidson EA; Wofsy SC; Saleska SR Nature; 2016 Jun; 534(7609):680-3. PubMed ID: 27357794 [TBL] [Abstract][Full Text] [Related]
11. Effect of environmental variables and stand structure on ecosystem respiration components in a Mediterranean beech forest. Guidolotti G; Rey A; D'Andrea E; Matteucci G; De Angelis P Tree Physiol; 2013 Sep; 33(9):960-72. PubMed ID: 24044943 [TBL] [Abstract][Full Text] [Related]
12. Land-use changes alter CO2 flux patterns of a tall-grass Andropogon field and a savanna-woodland continuum in the Orinoco lowlands. San José J; Montes R; Grace J; Nikonova N Tree Physiol; 2008 Mar; 28(3):437-50. PubMed ID: 18171667 [TBL] [Abstract][Full Text] [Related]
13. Direct and indirect climate change effects on carbon dioxide fluxes in a thawing boreal forest-wetland landscape. Helbig M; Chasmer LE; Desai AR; Kljun N; Quinton WL; Sonnentag O Glob Chang Biol; 2017 Aug; 23(8):3231-3248. PubMed ID: 28132402 [TBL] [Abstract][Full Text] [Related]
14. Net carbon dioxide losses of northern ecosystems in response to autumn warming. Piao S; Ciais P; Friedlingstein P; Peylin P; Reichstein M; Luyssaert S; Margolis H; Fang J; Barr A; Chen A; Grelle A; Hollinger DY; Laurila T; Lindroth A; Richardson AD; Vesala T Nature; 2008 Jan; 451(7174):49-52. PubMed ID: 18172494 [TBL] [Abstract][Full Text] [Related]
15. [Net carbon exchange and its environmental affecting factors in a forest plantation in Badaling, Beijing of China]. Tang X; Chen WJ; Li CY; Zha TS; Wu B; Wang XP; Jia X Ying Yong Sheng Tai Xue Bao; 2013 Nov; 24(11):3057-64. PubMed ID: 24564132 [TBL] [Abstract][Full Text] [Related]
16. Relationships between net primary productivity and stand age for several forest types and their influence on China's carbon balance. Wang S; Zhou L; Chen J; Ju W; Feng X; Wu W J Environ Manage; 2011 Jun; 92(6):1651-62. PubMed ID: 21339040 [TBL] [Abstract][Full Text] [Related]
17. Component respiration, ecosystem respiration and net primary production of a mature black spruce forest in northern Quebec. Hermle S; Lavigne MB; Bernier PY; Bergeron O; Paré D Tree Physiol; 2010 Apr; 30(4):527-40. PubMed ID: 20215120 [TBL] [Abstract][Full Text] [Related]
18. Simulating forest productivity and surface-atmosphere carbon exchange in the BOREAS study region. Kimball JS; Thornton PE; White MA; Running SW Tree Physiol; 1997; 17(8_9):589-599. PubMed ID: 14759832 [TBL] [Abstract][Full Text] [Related]
19. Temperature as a control over ecosystem CO2 fluxes in a high-elevation, subalpine forest. Huxman TE; Turnipseed AA; Sparks JP; Harley PC; Monson RK Oecologia; 2003 Mar; 134(4):537-46. PubMed ID: 12647126 [TBL] [Abstract][Full Text] [Related]
20. A large proportion of North American net ecosystem production is offset by emissions from harvested products, river/stream evasion, and biomass burning. Turner DP; Jacobson AR; Ritts WD; Wang WL; Nemani R Glob Chang Biol; 2013 Nov; 19(11):3516-28. PubMed ID: 23824790 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]