These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 17633217)

  • 21. A novel in situ forming drug delivery system for controlled parenteral drug delivery.
    Kranz H; Bodmeier R
    Int J Pharm; 2007 Mar; 332(1-2):107-14. PubMed ID: 17084049
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Biodegradable nanoparticles for protein delivery: analysis of preparation conditions on particle morphology and protein loading, activity and sustained release properties.
    Coleman J; Lowman A
    J Biomater Sci Polym Ed; 2012; 23(9):1129-51. PubMed ID: 21639993
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Polymeric and Non Polymeric Injectable In-situ Forming Implant Systems for Sustained Delivery of Lornoxicam: In vitro and In vivo Evaluation.
    Yehia SA; Halim SAA; Aziz MY
    Curr Drug Deliv; 2018; 15(8):1193-1203. PubMed ID: 29557743
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Study of an injectable in situ forming gel for sustained-release of Ivermectin in vitro and in vivo.
    Geng Z; Luo X; Zhang Z; Li H; Tian J; Yu Z
    Int J Biol Macromol; 2016 Apr; 85():271-6. PubMed ID: 26708436
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Development of Abuse-Deterrent Formulations Using Sucrose Acetate Isobutyrate.
    Barakh Ali SF; Dharani S; Afrooz H; Mohamed EM; Cook P; Khan MA; Rahman Z
    AAPS PharmSciTech; 2020 Mar; 21(3):99. PubMed ID: 32133549
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Solvent exchange-induced in situ forming gel comprising ethyl cellulose-antimicrobial drugs.
    Phaechamud T; Mahadlek J
    Int J Pharm; 2015 Oct; 494(1):381-92. PubMed ID: 26302862
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Drug release from injectable depots: two different in vitro mechanisms.
    Wang L; Venkatraman S; Kleiner L
    J Control Release; 2004 Sep; 99(2):207-16. PubMed ID: 15380631
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Long-Lasting
    Bazraee S; Mobedi H; Mashak A; Jamshidi A
    Curr Drug Deliv; 2022; 19(1):157-166. PubMed ID: 34139983
    [TBL] [Abstract][Full Text] [Related]  

  • 29. [Characteristics of poloxamer thermosensitive in situ gel of dexamethasone sodium phosphate].
    Li XY; Zhu ZJ; Cheng AY
    Yao Xue Xue Bao; 2008 Feb; 43(2):208-13. PubMed ID: 18507351
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Structure formation and characterization of injectable drug loaded biodegradable devices: in situ implants versus in situ microparticles.
    Kranz H; Bodmeier R
    Eur J Pharm Sci; 2008 Jul; 34(2-3):164-72. PubMed ID: 18501569
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Designing Solvent Exchange-Induced In Situ Forming Gel from Aqueous Insoluble Polymers as Matrix Base for Periodontitis Treatment.
    Srichan T; Phaechamud T
    AAPS PharmSciTech; 2017 Jan; 18(1):194-201. PubMed ID: 26951505
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Evaluation of melt rheology of lactose-filled polyethylene glycol composites by means of capillary rheometery.
    Bahramian B; Motlagh GH; Majidi S S; Kaffashi B; Nojoumi SA; Haririan I
    Pharm Dev Technol; 2013 Feb; 18(1):98-105. PubMed ID: 22141378
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Rheological behavior of poly(lactic acid)/synthetic mica nanocomposites.
    Souza DH; Andrade CT; Dias ML
    Mater Sci Eng C Mater Biol Appl; 2013 Apr; 33(3):1795-9. PubMed ID: 23827638
    [TBL] [Abstract][Full Text] [Related]  

  • 34. In situ forming microparticle system for controlled delivery of leuprolide acetate: influence of the formulation and processing parameters.
    Luan X; Bodmeier R
    Eur J Pharm Sci; 2006 Feb; 27(2-3):143-9. PubMed ID: 16243496
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Sustained delivery of human growth hormone from a novel gel system: SABER.
    Okumu FW; Dao le N; Fielder PJ; Dybdal N; Brooks D; Sane S; Cleland JL
    Biomaterials; 2002 Nov; 23(22):4353-8. PubMed ID: 12219825
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [Rheological properties of poloxamer 407 aqueous solutions].
    Hu J; Chen DW; Quan DQ
    Yao Xue Xue Bao; 2011 Feb; 46(2):227-31. PubMed ID: 21542295
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The rheological properties of different GNPs.
    Abdelhalim MA
    Lipids Health Dis; 2012 Jan; 11():14. PubMed ID: 22273240
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Simple measurements for prediction of drug release from polymer matrices - Solubility parameters and intrinsic viscosity.
    Madsen CG; Skov A; Baldursdottir S; Rades T; Jorgensen L; Medlicott NJ
    Eur J Pharm Biopharm; 2015 May; 92():1-7. PubMed ID: 25668778
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Development of indomethacin Carbopol ETD 2001 gels and the influence of storage time and temperature on their stability.
    Shawesh AM; Kaukonen A; Kallioinen S; Antikainen O; Yliruusi J
    Pharmazie; 2003 Feb; 58(2):130-5. PubMed ID: 12641331
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Rheological behavior of high methoxyl pectin from the pulp of tamarillo fruit (Solanum betaceum).
    do Nascimento GE; Simas-Tosin FF; Iacomini M; Gorin PA; Cordeiro LM
    Carbohydr Polym; 2016 Mar; 139():125-30. PubMed ID: 26794955
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.