BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 17633534)

  • 1. [Physicochemical properties of multicomponent polyhydroxyalkanoates].
    Volova TG; Mironov PV; Vasil'ev AD
    Biofizika; 2007; 52(3):460-5. PubMed ID: 17633534
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Physicochemical properties of two-component polyhydroxyalkanoates based on 3-hydroxybutyrate and 3-hydroxyvalerate].
    Volova TG; Plotnikov VF; Shishatskaia EI; Mironov PV; Vasil'ev AD
    Biofizika; 2004; 49(6):1038-46. PubMed ID: 15612544
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Biosynthesis of multicomponent polyhydroxyalkanoates by Wautersia eutropha].
    Volova TG; Kalacheva GS; Kozhevnikov IV; Steinbuchel A
    Mikrobiologiia; 2007; 76(6):797-804. PubMed ID: 18297870
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Fatty acid composition of Wautersia eutropha lipids under conditions of active polyhydroxyalkanoates synthesis].
    Kalacheva GS; Volova TG
    Mikrobiologiia; 2007; 76(5):608-14. PubMed ID: 18069320
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Synthesis of 3-hydroxybutyrate-CO-4-hydroxybutyrate copolymers by hydrogen-oxidizing bacteria].
    Volova TG; Zhila NO; Kalacheva GS; Sokolenko VA; Sinskey AJ
    Prikl Biokhim Mikrobiol; 2011; 47(5):544-50. PubMed ID: 22232895
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Autotrophic synthesis of polyhydroxyalkanoates by the bacteria Ralstonia eutropha in the presence of carbon monoxide.
    Volova TG; Kalacheva GS; Altukhova OV
    Appl Microbiol Biotechnol; 2002 Apr; 58(5):675-8. PubMed ID: 11956753
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Physiological and biochemical characteristics and capacity for polyhydroxyalkanoates synthesis in a glucose-utilizing strain of hydrogen-oxidizing bacteria, Ralstonia eutropha B8562].
    Volova TG; Kozhevnikov IV; Dolgopolova IuB; Trusova MIu; Kalacheva GS; Aref'eva IuV
    Mikrobiologiia; 2005; 74(6):788-94. PubMed ID: 16400989
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cost-effective recovery and purification of polyhydroxyalkanoates by selective dissolution of cell mass.
    Yu J; Chen LX
    Biotechnol Prog; 2006; 22(2):547-53. PubMed ID: 16599575
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparative study of promoters for the production of polyhydroxyalkanoates in recombinant strains of Wautersia eutropha.
    Delamarre SC; Batt CA
    Appl Microbiol Biotechnol; 2006 Aug; 71(5):668-79. PubMed ID: 16362422
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Properties of degradable polyhydroxyalkanoates with different monomer compositions.
    Volova T; Kiselev E; Nemtsev I; Lukyanenko А; Sukovatyi A; Kuzmin A; Ryltseva G; Shishatskaya E
    Int J Biol Macromol; 2021 Jul; 182():98-114. PubMed ID: 33836189
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A feeding strategy for incorporation of canola derived medium-chain-length monomers into the PHA produced by wild-type Cupriavidus necator.
    Rathinasabapathy A; Ramsay BA; Ramsay JA; Pérez-Guevara F
    World J Microbiol Biotechnol; 2014 Apr; 30(4):1409-16. PubMed ID: 24287944
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular weight and thermal properties of polyhydroxyalkanoates produced from fermented sugar molasses by open mixed cultures.
    Bengtsson S; Pisco AR; Johansson P; Lemos PC; Reis MA
    J Biotechnol; 2010 Jun; 147(3-4):172-9. PubMed ID: 20380854
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enzymatic recovery and purification of polyhydroxybutyrate produced by Ralstonia eutropha.
    Kapritchkoff FM; Viotti AP; Alli RC; Zuccolo M; Pradella JG; Maiorano AE; Miranda EA; Bonomi A
    J Biotechnol; 2006 Apr; 122(4):453-62. PubMed ID: 16253372
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fast procedure for the analysis of poly(hydroxyalkanoates) in bacterial cells by off-line pyrolysis/gas-chromatography with flame ionization detector.
    Torri C; Cordiani H; Samorì C; Favaro L; Fabbri D
    J Chromatogr A; 2014 Sep; 1359():230-6. PubMed ID: 25069742
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [The synthesis of hydroxybutyrate and hydroxyvalerate copolymers by the bacterium Ralstonia eutropha].
    Volova TG; Kalacheva GS
    Mikrobiologiia; 2005; 74(1):63-9. PubMed ID: 15835780
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular characterization of Pseudomonas sp. LDC-5 involved in accumulation of poly 3-hydroxybutyrate and medium-chain-length poly 3-hydroxyalkanoates.
    Sujatha K; Mahalakshmi A; Shenbagarathai R
    Arch Microbiol; 2007 Nov; 188(5):451-62. PubMed ID: 17653530
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metabolic carbon fluxes and biosynthesis of polyhydroxyalkanoates in Ralstonia eutropha on short chain fatty acids.
    Yu J; Si Y
    Biotechnol Prog; 2004; 20(4):1015-24. PubMed ID: 15296425
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High amounts of medium-chain-length polyhydroxyalkanoates subunits can be accumulated in recombinant Cupriavidus necator with wild-type synthase.
    Araceli FS; Juliana A R; Berenice VP; Fermin PG; Bruce A R
    J Biotechnol; 2022 Apr; 349():25-31. PubMed ID: 35341893
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Production of polyhydroxyalkanoates (PHAs) with canola oil as carbon source.
    López-Cuellar MR; Alba-Flores J; Rodríguez JN; Pérez-Guevara F
    Int J Biol Macromol; 2011 Jan; 48(1):74-80. PubMed ID: 20933541
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recovery of amorphous polyhydroxybutyrate granules from Cupriavidus necator cells grown on used cooking oil.
    Martino L; Cruz MV; Scoma A; Freitas F; Bertin L; Scandola M; Reis MA
    Int J Biol Macromol; 2014 Nov; 71():117-23. PubMed ID: 24751509
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.