These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 17633643)

  • 1. [Biodegradation of 2, 4- and 2, 6-dinitrotoluene in a pilot-scale system for soil contaminated with explosive compounds].
    He YL; Hughes JB; Sung S
    Huan Jing Ke Xue; 2007 Mar; 28(3):613-6. PubMed ID: 17633643
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In situ pilot test for bioremediation of energetic compound-contaminated soil at a former military demolition range site.
    Jugnia LB; Manno D; Drouin K; Hendry M
    Environ Sci Pollut Res Int; 2018 Jul; 25(20):19436-19445. PubMed ID: 29728973
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Remediation of dinitrotoluene contaminated soils from former ammunition plants: soil washing efficiency and effective process monitoring in bioslurry reactors.
    Zhang C; Daprato RC; Nishino SF; Spain JC; Hughes JB
    J Hazard Mater; 2001 Oct; 87(1-3):139-54. PubMed ID: 11566406
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Soil column evaluation of factors controlling biodegradation of DNT in the vadose zone.
    Fortner JD; Zhang C; Spain JC; Hughes JB
    Environ Sci Technol; 2003 Aug; 37(15):3382-91. PubMed ID: 12966985
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Determination of 2,4- and 2,6-dinitrotoluene biodegradation limits.
    Han S; Mukherji ST; Rice A; Hughes JB
    Chemosphere; 2011 Oct; 85(5):848-53. PubMed ID: 21802115
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Use of poultry litter for biodegradation of soil contaminated with 2,4- and 2,6-dinitrotoluene.
    Gupta G; Bhaskaran H
    J Hazard Mater; 2004 Dec; 116(1-2):167-71. PubMed ID: 15561375
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of chitin and temperature on sub-Arctic soil microbial and fungal communities and biodegradation of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) and 2,4-dinitrotoluene (DNT).
    Crocker FH; Jung CM; Indest KJ; Everman SJ; Carr MR
    Biodegradation; 2019 Dec; 30(5-6):415-431. PubMed ID: 31250271
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biodegradation of 2,4-dinitrotoluene by different plant species.
    Podlipná R; Pospíšilová B; Vaněk T
    Ecotoxicol Environ Saf; 2015 Feb; 112():54-9. PubMed ID: 25463853
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Aerobic degradation of dinitrotoluenes and pathway for bacterial degradation of 2,6-dinitrotoluene.
    Nishino SF; Paoli GC; Spain JC
    Appl Environ Microbiol; 2000 May; 66(5):2139-47. PubMed ID: 10788393
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bacterial energetics, stoichiometry, and kinetic modeling of 2,4-dinitrotoluene biodegradation in a batch respirometer.
    Zhang C; Hughes JB
    Environ Toxicol Chem; 2004 Dec; 23(12):2799-806. PubMed ID: 15648752
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metabolism of the explosive hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) in a contaminated vadose zone.
    Ronen Z; Yanovich Y; Goldin R; Adar E
    Chemosphere; 2008 Nov; 73(9):1492-8. PubMed ID: 18774159
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Using compound-specific isotope analysis to assess biodegradation of nitroaromatic explosives in the subsurface.
    Wijker RS; Bolotin J; Nishino SF; Spain JC; Hofstetter TB
    Environ Sci Technol; 2013 Jul; 47(13):6872-83. PubMed ID: 23547531
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of a biodegradable ethylene glycol dinitrate-based explosive.
    Dario A; Schroeder M; Nyanhongo GS; Englmayer G; Guebitz GM
    J Hazard Mater; 2010 Apr; 176(1-3):125-30. PubMed ID: 19959286
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improved RDX detoxification with starch addition using a novel nitrogen-fixing aerobic microbial consortium from soil contaminated with explosives.
    Khan MI; Yang J; Yoo B; Park J
    J Hazard Mater; 2015 Apr; 287():243-51. PubMed ID: 25661171
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Aerobic Transformation of 2,4-Dinitrotoluene by Escherichia coli and Its Implications for the Detection of Trace Explosives.
    Shemer B; Yagur-Kroll S; Hazan C; Belkin S
    Appl Environ Microbiol; 2018 Feb; 84(4):. PubMed ID: 29222096
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Aerobic degradation of 2,4-dinitrotoluene by individual bacterial strains and defined mixed population in submerged cultures.
    Hudcova T; Halecky M; Kozliak E; Stiborova M; Paca J
    J Hazard Mater; 2011 Aug; 192(2):605-13. PubMed ID: 21665364
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Persistence and biodegradation of monoethanolamine and 2-propanolamine at an abandoned industrial site.
    Hawthorne SB; Kubátová A; Gallagher JR; Sorensen JA; Miller DJ
    Environ Sci Technol; 2005 May; 39(10):3639-45. PubMed ID: 15952368
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Potential for plant growth promotion by a consortium of stress-tolerant 2,4-dinitrotoluene-degrading bacteria: isolation and characterization of a military soil.
    Thijs S; Weyens N; Sillen W; Gkorezis P; Carleer R; Vangronsveld J
    Microb Biotechnol; 2014 Jul; 7(4):294-306. PubMed ID: 24467368
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pilot-scale in situ bioremediation of HMX and RDX in soil pore water in Hawaii.
    Payne ZM; Lamichhane KM; Babcock RW; Turnbull SJ
    Environ Sci Process Impacts; 2013 Oct; 15(11):2023-9. PubMed ID: 24061783
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Acute toxicity assessment of explosive-contaminated soil extracting solution by luminescent bacteria assays.
    Xu W; Jiang Z; Zhao Q; Zhang Z; Su H; Gao X; Ye Z
    Environ Sci Pollut Res Int; 2016 Nov; 23(22):22803-22809. PubMed ID: 27566156
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.