These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

255 related articles for article (PubMed ID: 17634365)

  • 1. Endpoint stiffness of the arm is directionally tuned to instability in the environment.
    Franklin DW; Liaw G; Milner TE; Osu R; Burdet E; Kawato M
    J Neurosci; 2007 Jul; 27(29):7705-16. PubMed ID: 17634365
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Impedance control balances stability with metabolically costly muscle activation.
    Franklin DW; So U; Kawato M; Milner TE
    J Neurophysiol; 2004 Nov; 92(5):3097-105. PubMed ID: 15201309
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Impedance control is selectively tuned to multiple directions of movement.
    Kadiallah A; Liaw G; Kawato M; Franklin DW; Burdet E
    J Neurophysiol; 2011 Nov; 106(5):2737-48. PubMed ID: 21849617
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Functional significance of stiffness in adaptation of multijoint arm movements to stable and unstable dynamics.
    Franklin DW; Burdet E; Osu R; Kawato M; Milner TE
    Exp Brain Res; 2003 Jul; 151(2):145-57. PubMed ID: 12783150
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Impedance control reduces instability that arises from motor noise.
    Selen LP; Franklin DW; Wolpert DM
    J Neurosci; 2009 Oct; 29(40):12606-16. PubMed ID: 19812335
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Novel strategies in feedforward adaptation to a position-dependent perturbation.
    Hinder MR; Milner TE
    Exp Brain Res; 2005 Aug; 165(2):239-49. PubMed ID: 15856204
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Directional invariance during loading-related modulations of muscle activity: evidence for motor equivalence.
    Levin O; Wenderoth N; Steyvers M; Swinnen SP
    Exp Brain Res; 2003 Jan; 148(1):62-76. PubMed ID: 12478397
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Adaptive control of stiffness to stabilize hand position with large loads.
    Franklin DW; Milner TE
    Exp Brain Res; 2003 Sep; 152(2):211-20. PubMed ID: 12845511
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Impedance control is tuned to multiple directions of movement.
    Kadiallah A; Liaw G; Burdet E; Kawato M; Franklin DW
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():5358-61. PubMed ID: 19163928
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Accuracy of internal dynamics models in limb movements depends on stability.
    Milner TE
    Exp Brain Res; 2004 Nov; 159(2):172-84. PubMed ID: 15243728
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multijoint muscle regulation mechanisms examined by measured human arm stiffness and EMG signals.
    Osu R; Gomi H
    J Neurophysiol; 1999 Apr; 81(4):1458-68. PubMed ID: 10200182
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reaching to multiple targets when standing: the spatial organization of feedforward postural adjustments.
    Leonard JA; Brown RH; Stapley PJ
    J Neurophysiol; 2009 Apr; 101(4):2120-33. PubMed ID: 19211658
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Learning to control arm stiffness under static conditions.
    Darainy M; Malfait N; Gribble PL; Towhidkhah F; Ostry DJ
    J Neurophysiol; 2004 Dec; 92(6):3344-50. PubMed ID: 15282262
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Control of hand impedance under static conditions and during reaching movement.
    Darainy M; Towhidkhah F; Ostry DJ
    J Neurophysiol; 2007 Apr; 97(4):2676-85. PubMed ID: 17287438
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interactions between limb and environmental mechanics influence stretch reflex sensitivity in the human arm.
    Krutky MA; Ravichandran VJ; Trumbower RD; Perreault EJ
    J Neurophysiol; 2010 Jan; 103(1):429-40. PubMed ID: 19906880
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Physiological basis of limb-impedance modulation during free and constrained movements.
    Damm L; McIntyre J
    J Neurophysiol; 2008 Nov; 100(5):2577-88. PubMed ID: 18715898
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electromyographic correlates of learning an internal model of reaching movements.
    Thoroughman KA; Shadmehr R
    J Neurosci; 1999 Oct; 19(19):8573-88. PubMed ID: 10493757
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adjustment of the human arm viscoelastic properties to the direction of reaching.
    Frolov AA; Prokopenko RA; Dufossè M; Ouezdou FB
    Biol Cybern; 2006 Feb; 94(2):97-109. PubMed ID: 16344944
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Adaptation to stable and unstable dynamics achieved by combined impedance control and inverse dynamics model.
    Franklin DW; Osu R; Burdet E; Kawato M; Milner TE
    J Neurophysiol; 2003 Nov; 90(5):3270-82. PubMed ID: 14615432
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Impedance is modulated to meet accuracy demands during goal-directed arm movements.
    Selen LP; Beek PJ; van Dieën JH
    Exp Brain Res; 2006 Jun; 172(1):129-38. PubMed ID: 16372169
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.